Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit import session_state | |
import joblib | |
from io import StringIO | |
import json | |
import os | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
def find_optimal_price(data, model, buying_price): | |
start_price = data.PRICE.min() - 1 # start price | |
end_price = data.PRICE.min() + 10 # end price | |
test = pd.DataFrame(columns = ["PRICE", "QUANTITY"]) # choose required columns | |
test['PRICE'] = np.arange(start_price, end_price,0.01) | |
test['QUANTITY'] = model.predict(test['PRICE']) # make predictions | |
test['PROFIT'] = (test["PRICE"] - buying_price) * test["QUANTITY"] | |
plt.plot(test['PRICE'],test['QUANTITY']) # plot the results | |
plt.plot(test['PRICE'],test['PROFIT']) | |
plt.show() | |
ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0] | |
values_at_max_profit = test.iloc[[ind]] | |
return values_at_max_profit | |
model = joblib.load("burger_model.sav") | |
uploaded_file = st.file_uploader("Choose a file") | |
if uploaded_file: | |
# Read data from file | |
df = pd.read_csv(uploaded_file) | |
# Clean data | |
df = df[df['PRICE'].notna()].reset_index(drop=True) | |
buying_price = st.slider("Select buying price", min_value=9, max_value=15, value=1, step=1) | |
result = find_optimal_price(df,model,buying_price) | |
st.text_area("PRICE Should be to achive maximum profit", value=list(result.to_dict()['PRICE'].values())[0]) |