Spaces:
Sleeping
Sleeping
Upload reg.py
Browse files- pages/reg.py +34 -0
pages/reg.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit import session_state
|
3 |
+
import joblib
|
4 |
+
from io import StringIO
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
def find_optimal_price(data, model, buying_price):
|
12 |
+
start_price = data.PRICE.min() - 1 # start price
|
13 |
+
end_price = data.PRICE.min() + 10 # end price
|
14 |
+
test = pd.DataFrame(columns = ["PRICE", "QUANTITY"]) # choose required columns
|
15 |
+
test['PRICE'] = np.arange(start_price, end_price,0.01)
|
16 |
+
test['QUANTITY'] = model.predict(test['PRICE']) # make predictions
|
17 |
+
test['PROFIT'] = (test["PRICE"] - buying_price) * test["QUANTITY"]
|
18 |
+
plt.plot(test['PRICE'],test['QUANTITY']) # plot the results
|
19 |
+
plt.plot(test['PRICE'],test['PROFIT'])
|
20 |
+
plt.show()
|
21 |
+
ind = np.where(test['PROFIT'] == test['PROFIT'].max())[0][0]
|
22 |
+
values_at_max_profit = test.iloc[[ind]]
|
23 |
+
return values_at_max_profit
|
24 |
+
model = joblib.load("burger_model.sav")
|
25 |
+
uploaded_file = st.file_uploader("Choose a file")
|
26 |
+
if uploaded_file:
|
27 |
+
# Read data from file
|
28 |
+
df = pd.read_csv(uploaded_file)
|
29 |
+
|
30 |
+
# Clean data
|
31 |
+
df = df[df['PRICE'].notna()].reset_index(drop=True)
|
32 |
+
buying_price = st.slider("Select buying price", min_value=9, max_value=15, value=1, step=1)
|
33 |
+
result = find_optimal_price(df,model,buying_price)
|
34 |
+
st.text_area("PRICE Should be to achive maximum profit", value=list(result.to_dict()['PRICE'].values())[0])
|