ahassoun's picture
Upload 3018 files
ee6e328
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# MatCha
## Overview
MatCha has been proposed in the paper [MatCha: Enhancing Visual Language Pretraining with Math Reasoning and Chart Derendering](https://arxiv.org/abs/2212.09662), from Fangyu Liu, Francesco Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun, Nigel Collier, Julian Martin Eisenschlos.
The abstract of the paper states the following:
*Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.*
## Model description
MatCha is a model that is trained using `Pix2Struct` architecture. You can find more information about `Pix2Struct` in the [Pix2Struct documentation](https://huggingface.co/docs/transformers/main/en/model_doc/pix2struct).
MatCha is a Visual Question Answering subset of `Pix2Struct` architecture. It renders the input question on the image and predicts the answer.
## Usage
Currently 6 checkpoints are available for MatCha:
- `google/matcha`: the base MatCha model, used to fine-tune MatCha on downstream tasks
- `google/matcha-chartqa`: MatCha model fine-tuned on ChartQA dataset. It can be used to answer questions about charts.
- `google/matcha-plotqa-v1`: MatCha model fine-tuned on PlotQA dataset. It can be used to answer questions about plots.
- `google/matcha-plotqa-v2`: MatCha model fine-tuned on PlotQA dataset. It can be used to answer questions about plots.
- `google/matcha-chart2text-statista`: MatCha model fine-tuned on Statista dataset.
- `google/matcha-chart2text-pew`: MatCha model fine-tuned on Pew dataset.
The models finetuned on `chart2text-pew` and `chart2text-statista` are more suited for summarization, whereas the models finetuned on `plotqa` and `chartqa` are more suited for question answering.
You can use these models as follows (example on a ChatQA dataset):
```python
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import requests
from PIL import Image
model = Pix2StructForConditionalGeneration.from_pretrained("google/matcha-chartqa").to(0)
processor = AutoProcessor.from_pretrained("google/matcha-chartqa")
url = "https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, text="Is the sum of all 4 places greater than Laos?", return_tensors="pt").to(0)
predictions = model.generate(**inputs, max_new_tokens=512)
print(processor.decode(predictions[0], skip_special_tokens=True))
```
## Fine-tuning
To fine-tune MatCha, refer to the pix2struct [fine-tuning notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_pix2struct.ipynb). For `Pix2Struct` models, we have found out that fine-tuning the model with Adafactor and cosine learning rate scheduler leads to faste convergence:
```python
from transformers.optimization import Adafactor, get_cosine_schedule_with_warmup
optimizer = Adafactor(self.parameters(), scale_parameter=False, relative_step=False, lr=0.01, weight_decay=1e-05)
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=1000, num_training_steps=40000)
```