voice_clone_v3 / transformers /tests /pipelines /test_pipelines_translation.py
ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
7.12 kB
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import pytest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
MBart50TokenizerFast,
MBartConfig,
MBartForConditionalGeneration,
TranslationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow
from .test_pipelines_common import ANY
@is_pipeline_test
class TranslationPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
if isinstance(model.config, MBartConfig):
src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2]
translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang)
else:
translator = TranslationPipeline(model=model, tokenizer=tokenizer)
return translator, ["Some string", "Some other text"]
def run_pipeline_test(self, translator, _):
outputs = translator("Some string")
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}])
outputs = translator(["Some string", "other string"])
self.assertEqual(outputs, [{"translation_text": ANY(str)}, {"translation_text": ANY(str)}])
@require_torch
def test_small_model_pt(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_tf
def test_small_model_tf(self):
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide"
" Beide Beide"
)
}
],
)
@require_torch
def test_en_to_de_pt(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
@require_tf
def test_en_to_de_tf(self):
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf")
outputs = translator("This is a test string", max_length=20)
self.assertEqual(
outputs,
[
{
"translation_text": (
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine"
" urine urine urine urine urine urine urine"
)
}
],
)
class TranslationNewFormatPipelineTests(unittest.TestCase):
@require_torch
@slow
def test_default_translations(self):
# We don't provide a default for this pair
with self.assertRaises(ValueError):
pipeline(task="translation_cn_to_ar")
# but we do for this one
translator = pipeline(task="translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
@slow
def test_multilingual_translation(self):
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translator = pipeline(task="translation", model=model, tokenizer=tokenizer)
# Missing src_lang, tgt_lang
with self.assertRaises(ValueError):
translator("This is a test")
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN")
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}])
# src_lang, tgt_lang can be defined at pipeline call time
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR")
outputs = translator("This is a test")
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}])
@require_torch
def test_translation_on_odd_language(self):
model = "patrickvonplaten/t5-tiny-random"
translator = pipeline(task="translation_cn_to_ar", model=model)
self.assertEqual(translator._preprocess_params["src_lang"], "cn")
self.assertEqual(translator._preprocess_params["tgt_lang"], "ar")
@require_torch
def test_translation_default_language_selection(self):
model = "patrickvonplaten/t5-tiny-random"
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"):
translator = pipeline(task="translation", model=model)
self.assertEqual(translator.task, "translation_en_to_de")
self.assertEqual(translator._preprocess_params["src_lang"], "en")
self.assertEqual(translator._preprocess_params["tgt_lang"], "de")
@require_torch
def test_translation_with_no_language_no_model_fails(self):
with self.assertRaises(ValueError):
pipeline(task="translation")