|
import torch |
|
import einops |
|
|
|
import ldm.modules.encoders.modules |
|
import ldm.modules.attention |
|
|
|
from transformers import logging |
|
from ldm.modules.attention import default |
|
|
|
|
|
def disable_verbosity(): |
|
logging.set_verbosity_error() |
|
print('logging improved.') |
|
return |
|
|
|
|
|
def enable_sliced_attention(): |
|
ldm.modules.attention.CrossAttention.forward = _hacked_sliced_attentin_forward |
|
print('Enabled sliced_attention.') |
|
return |
|
|
|
|
|
def hack_everything(clip_skip=0): |
|
disable_verbosity() |
|
ldm.modules.encoders.modules.FrozenCLIPEmbedder.forward = _hacked_clip_forward |
|
ldm.modules.encoders.modules.FrozenCLIPEmbedder.clip_skip = clip_skip |
|
print('Enabled clip hacks.') |
|
return |
|
|
|
|
|
|
|
def _hacked_clip_forward(self, text): |
|
PAD = self.tokenizer.pad_token_id |
|
EOS = self.tokenizer.eos_token_id |
|
BOS = self.tokenizer.bos_token_id |
|
|
|
def tokenize(t): |
|
return self.tokenizer(t, truncation=False, add_special_tokens=False)["input_ids"] |
|
|
|
def transformer_encode(t): |
|
if self.clip_skip > 1: |
|
rt = self.transformer(input_ids=t, output_hidden_states=True) |
|
return self.transformer.text_model.final_layer_norm(rt.hidden_states[-self.clip_skip]) |
|
else: |
|
return self.transformer(input_ids=t, output_hidden_states=False).last_hidden_state |
|
|
|
def split(x): |
|
return x[75 * 0: 75 * 1], x[75 * 1: 75 * 2], x[75 * 2: 75 * 3] |
|
|
|
def pad(x, p, i): |
|
return x[:i] if len(x) >= i else x + [p] * (i - len(x)) |
|
|
|
raw_tokens_list = tokenize(text) |
|
tokens_list = [] |
|
|
|
for raw_tokens in raw_tokens_list: |
|
raw_tokens_123 = split(raw_tokens) |
|
raw_tokens_123 = [[BOS] + raw_tokens_i + [EOS] for raw_tokens_i in raw_tokens_123] |
|
raw_tokens_123 = [pad(raw_tokens_i, PAD, 77) for raw_tokens_i in raw_tokens_123] |
|
tokens_list.append(raw_tokens_123) |
|
|
|
tokens_list = torch.IntTensor(tokens_list).to(self.device) |
|
|
|
feed = einops.rearrange(tokens_list, 'b f i -> (b f) i') |
|
y = transformer_encode(feed) |
|
z = einops.rearrange(y, '(b f) i c -> b (f i) c', f=3) |
|
|
|
return z |
|
|
|
|
|
|
|
def _hacked_sliced_attentin_forward(self, x, context=None, mask=None): |
|
h = self.heads |
|
|
|
q = self.to_q(x) |
|
context = default(context, x) |
|
k = self.to_k(context) |
|
v = self.to_v(context) |
|
del context, x |
|
|
|
q, k, v = map(lambda t: einops.rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) |
|
|
|
limit = k.shape[0] |
|
att_step = 1 |
|
q_chunks = list(torch.tensor_split(q, limit // att_step, dim=0)) |
|
k_chunks = list(torch.tensor_split(k, limit // att_step, dim=0)) |
|
v_chunks = list(torch.tensor_split(v, limit // att_step, dim=0)) |
|
|
|
q_chunks.reverse() |
|
k_chunks.reverse() |
|
v_chunks.reverse() |
|
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) |
|
del k, q, v |
|
for i in range(0, limit, att_step): |
|
q_buffer = q_chunks.pop() |
|
k_buffer = k_chunks.pop() |
|
v_buffer = v_chunks.pop() |
|
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale |
|
|
|
del k_buffer, q_buffer |
|
|
|
|
|
sim_buffer = sim_buffer.softmax(dim=-1) |
|
|
|
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer) |
|
del v_buffer |
|
sim[i:i + att_step, :, :] = sim_buffer |
|
|
|
del sim_buffer |
|
sim = einops.rearrange(sim, '(b h) n d -> b n (h d)', h=h) |
|
return self.to_out(sim) |
|
|