Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LangGraph Agent using Mistral"""
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
5 |
+
from langgraph.prebuilt import tools_condition
|
6 |
+
from langgraph.prebuilt import ToolNode
|
7 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
8 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
10 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
11 |
+
from langchain_core.tools import tool
|
12 |
+
from transformers import pipeline
|
13 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
14 |
+
from supabase.client import Client, create_client
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# Tools
|
19 |
+
@tool
|
20 |
+
def multiply(a: int, b: int) -> int:
|
21 |
+
return a * b
|
22 |
+
|
23 |
+
@tool
|
24 |
+
def add(a: int, b: int) -> int:
|
25 |
+
return a + b
|
26 |
+
|
27 |
+
@tool
|
28 |
+
def subtract(a: int, b: int) -> int:
|
29 |
+
return a - b
|
30 |
+
|
31 |
+
@tool
|
32 |
+
def divide(a: int, b: int) -> float:
|
33 |
+
if b == 0:
|
34 |
+
raise ValueError("Cannot divide by zero.")
|
35 |
+
return a / b
|
36 |
+
|
37 |
+
@tool
|
38 |
+
def modulus(a: int, b: int) -> int:
|
39 |
+
return a % b
|
40 |
+
|
41 |
+
@tool
|
42 |
+
def wiki_search(query: str) -> str:
|
43 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
44 |
+
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
45 |
+
|
46 |
+
@tool
|
47 |
+
def web_search(query: str) -> str:
|
48 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
49 |
+
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
50 |
+
|
51 |
+
@tool
|
52 |
+
def arvix_search(query: str) -> str:
|
53 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
54 |
+
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
|
55 |
+
|
56 |
+
tools = [multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search]
|
57 |
+
|
58 |
+
# Load system prompt
|
59 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
60 |
+
system_prompt = f.read()
|
61 |
+
sys_msg = SystemMessage(content=system_prompt)
|
62 |
+
|
63 |
+
# Vector store setup
|
64 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
65 |
+
supabase: Client = create_client(
|
66 |
+
os.environ.get("SUPABASE_URL"),
|
67 |
+
os.environ.get("SUPABASE_SERVICE_KEY")
|
68 |
+
)
|
69 |
+
vector_store = SupabaseVectorStore(
|
70 |
+
client=supabase,
|
71 |
+
embedding=embeddings,
|
72 |
+
table_name="documents",
|
73 |
+
query_name="match_documents_langchain"
|
74 |
+
)
|
75 |
+
|
76 |
+
# Mistral agent
|
77 |
+
class MistralAgent:
|
78 |
+
def __init__(self):
|
79 |
+
self.generator = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1", device=0)
|
80 |
+
print("Mistral model loaded.")
|
81 |
+
|
82 |
+
def invoke(self, messages):
|
83 |
+
question = messages[-1].content
|
84 |
+
result = self.generator(question, max_length=300, do_sample=True)[0]["generated_text"]
|
85 |
+
return HumanMessage(content=result.strip())
|
86 |
+
|
87 |
+
mistral_agent = MistralAgent()
|
88 |
+
|
89 |
+
# LangGraph builder
|
90 |
+
def build_graph():
|
91 |
+
def assistant(state: MessagesState):
|
92 |
+
return {"messages": [mistral_agent.invoke(state["messages"])]}
|
93 |
+
|
94 |
+
def retriever(state: MessagesState):
|
95 |
+
similar = vector_store.similarity_search(state["messages"][-1].content)
|
96 |
+
example = HumanMessage(content=f"Similar Q&A:\n\n{similar[0].page_content}")
|
97 |
+
return {"messages": [sys_msg] + state["messages"] + [example]}
|
98 |
+
|
99 |
+
builder = StateGraph(MessagesState)
|
100 |
+
builder.add_node("retriever", retriever)
|
101 |
+
builder.add_node("assistant", assistant)
|
102 |
+
builder.add_node("tools", ToolNode(tools))
|
103 |
+
builder.add_edge(START, "retriever")
|
104 |
+
builder.add_edge("retriever", "assistant")
|
105 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
106 |
+
builder.add_edge("tools", "assistant")
|
107 |
+
|
108 |
+
return builder.compile()
|
109 |
+
|
110 |
+
# Run the agent
|
111 |
+
def run_agent(question: str) -> str:
|
112 |
+
graph = build_graph()
|
113 |
+
messages = [HumanMessage(content=question)]
|
114 |
+
result = graph.invoke({"messages": messages})
|
115 |
+
return result["messages"][-1].content.strip()
|
116 |
+
|
117 |
+
if __name__ == "__main__":
|
118 |
+
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
|
119 |
+
answer = run_agent(question)
|
120 |
+
print("ANSWER:", answer)
|