Upload app.py
Browse files
app.py
CHANGED
@@ -1,196 +1,144 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import requests
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
print(f"
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
146 |
-
gr.Markdown(
|
147 |
-
"""
|
148 |
-
**Instructions:**
|
149 |
-
|
150 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
151 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
-
"""
|
159 |
-
)
|
160 |
-
|
161 |
-
gr.LoginButton()
|
162 |
-
|
163 |
-
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
-
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
-
|
174 |
-
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from smolagents import LiteLLMModel, CodeAgent, DuckDuckGoSearchTool
|
7 |
+
from gaia_tools import ReverseTextTool, RunPythonFileTool, download_server
|
8 |
+
|
9 |
+
# System prompt for the agent
|
10 |
+
SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question.
|
11 |
+
Report your thoughts, and finish your answer with just the answer — no prefixes like "FINAL ANSWER:".
|
12 |
+
Your answer should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings.
|
13 |
+
If you're asked for a number, don’t use commas or units like $ or %, unless specified.
|
14 |
+
If you're asked for a string, don’t use articles or abbreviations (e.g. for cities), and write digits in plain text unless told otherwise.
|
15 |
+
|
16 |
+
Tool Use Guidelines:
|
17 |
+
1. Do *not* use any tools outside of the provided tools list.
|
18 |
+
2. Always use *only one tool at a time* in each step of your execution.
|
19 |
+
3. If the question refers to a .py file or uploaded Python script, use *RunPythonFileTool* to execute it and base your answer on its output.
|
20 |
+
4. If the question looks reversed (starts with a period or reads backward), first use *ReverseTextTool* to reverse it, then process the question.
|
21 |
+
5. For logic or word puzzles, solve them directly unless they are reversed — in which case, decode first using *ReverseTextTool*.
|
22 |
+
6. When dealing with Excel files, prioritize using the *excel* tool over writing code in *terminal-controller*.
|
23 |
+
7. If you need to download a file, always use the *download_server* tool and save it to the correct path.
|
24 |
+
8. Even for complex tasks, assume a solution exists. If one method fails, try another approach using different tools.
|
25 |
+
9. Due to context length limits, keep browser-based tasks (e.g., searches) as short and efficient as possible.
|
26 |
+
"""
|
27 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
28 |
+
|
29 |
+
# Agent wrapper using LiteLLMModel
|
30 |
+
class MyAgent:
|
31 |
+
def _init_(self):
|
32 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
33 |
+
if not gemini_api_key:
|
34 |
+
raise ValueError("GEMINI_API_KEY not set in environment variables.")
|
35 |
+
|
36 |
+
self.model = LiteLLMModel(
|
37 |
+
model_id="gemini/gemini-2.0-flash-lite",
|
38 |
+
api_key=gemini_api_key,
|
39 |
+
system_prompt=SYSTEM_PROMPT
|
40 |
+
)
|
41 |
+
|
42 |
+
self.agent = CodeAgent(
|
43 |
+
tools=[
|
44 |
+
DuckDuckGoSearchTool(),
|
45 |
+
ReverseTextTool,
|
46 |
+
RunPythonFileTool,
|
47 |
+
download_server
|
48 |
+
],
|
49 |
+
model=self.model,
|
50 |
+
add_base_tools=True,
|
51 |
+
)
|
52 |
+
|
53 |
+
def _call_(self, question: str) -> str:
|
54 |
+
return self.agent.run(question)
|
55 |
+
|
56 |
+
# Main evaluation function
|
57 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
58 |
+
space_id = os.getenv("SPACE_ID")
|
59 |
+
|
60 |
+
if profile:
|
61 |
+
username = profile.username
|
62 |
+
print(f"User logged in: {username}")
|
63 |
+
else:
|
64 |
+
print("User not logged in.")
|
65 |
+
return "Please login to Hugging Face.", None
|
66 |
+
|
67 |
+
questions_url = f"{DEFAULT_API_URL}/questions"
|
68 |
+
submit_url = f"{DEFAULT_API_URL}/submit"
|
69 |
+
|
70 |
+
try:
|
71 |
+
agent = MyAgent()
|
72 |
+
except Exception as e:
|
73 |
+
return f"Error initializing agent: {e}", None
|
74 |
+
|
75 |
+
try:
|
76 |
+
response = requests.get(questions_url, timeout=15)
|
77 |
+
response.raise_for_status()
|
78 |
+
questions_data = response.json()
|
79 |
+
except Exception as e:
|
80 |
+
return f"Error fetching questions: {e}", None
|
81 |
+
|
82 |
+
results_log = []
|
83 |
+
answers_payload = []
|
84 |
+
|
85 |
+
for item in questions_data:
|
86 |
+
task_id = item.get("task_id")
|
87 |
+
question_text = item.get("question")
|
88 |
+
if not task_id or question_text is None:
|
89 |
+
continue
|
90 |
+
try:
|
91 |
+
submitted_answer = agent(question_text)
|
92 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
93 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
94 |
+
except Exception as e:
|
95 |
+
results_log.append({
|
96 |
+
"Task ID": task_id,
|
97 |
+
"Question": question_text,
|
98 |
+
"Submitted Answer": f"AGENT ERROR: {e}"
|
99 |
+
})
|
100 |
+
|
101 |
+
if not answers_payload:
|
102 |
+
return "Agent did not return any answers.", pd.DataFrame(results_log)
|
103 |
+
|
104 |
+
submission_data = {
|
105 |
+
"username": profile.username.strip(),
|
106 |
+
"agent_code": f"https://huggingface.co/spaces/{space_id}/tree/main",
|
107 |
+
"answers": answers_payload
|
108 |
+
}
|
109 |
+
|
110 |
+
try:
|
111 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
112 |
+
response.raise_for_status()
|
113 |
+
result_data = response.json()
|
114 |
+
final_status = (
|
115 |
+
f"Submission Successful!\n"
|
116 |
+
f"User: {result_data.get('username')}\n"
|
117 |
+
f"Score: {result_data.get('score', 'N/A')}% "
|
118 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
119 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
120 |
+
)
|
121 |
+
return final_status, pd.DataFrame(results_log)
|
122 |
+
except Exception as e:
|
123 |
+
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
124 |
+
|
125 |
+
# Gradio UI setup
|
126 |
+
with gr.Blocks() as demo:
|
127 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
128 |
+
gr.Markdown("""
|
129 |
+
*Instructions:*
|
130 |
+
1. Clone this space and configure your Gemini API key.
|
131 |
+
2. Log in to Hugging Face.
|
132 |
+
3. Run your agent on evaluation tasks and submit answers.
|
133 |
+
""")
|
134 |
+
|
135 |
+
gr.LoginButton()
|
136 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
137 |
+
status_output = gr.Textbox(label="Submission Result", lines=5, interactive=False)
|
138 |
+
results_table = gr.DataFrame(label="Results", wrap=True)
|
139 |
+
|
140 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
print("🔧 App starting...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
demo.launch(debug=True, share=False)
|