Franciscolopez's picture
update.app
5da0fd5 verified
raw
history blame
5.18 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
# --- Hugging Face Agents & Tools imports ---
from transformers import load_tool, ReactAgent
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Load Tools ---
# Document QA tool
qa_tool = load_tool(
task_or_repo_id="document_question_answering",
model_repo_id="deepset/roberta-base-squad2"
)
# Web search tool
web_tool = load_tool(
task_or_repo_id="search"
)
# Python REPL tool
python_tool = load_tool(
task_or_repo_id="python_repl"
)
# --- Agent Definition ---
class BasicAgent:
def __init__(self):
print("BasicAgent initialized with real tools.")
# Initialize a ReAct agent with the loaded tools
self.agent = ReactAgent(
tools=[qa_tool, web_tool, python_tool],
llm_engine="openai/chat:gpt-3.5-turbo",
verbose=True
)
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
answer = self.agent.run(question)
print(f"Agent returning answer: {answer}")
return answer
except Exception as e:
print(f"Error in agent execution: {e}")
return f"AGENT ERROR: {e}"
# --- Evaluation & Submission Logic ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = profile.username
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent code at: {agent_code}")
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# 3. Run Agent on each question
results_log = []
answers_payload = []
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
if not answers_payload:
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Submit Answers
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
print(f"Submission error: {e}")
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Clone this space and modify the code to define your agent's logic and tools.
2. Log in with Hugging Face to submit under your username.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("Launching Gradio App...")
demo.launch(debug=True, share=False)