|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
|
|
|
|
from transformers import load_tool, ReactAgent |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
qa_tool = load_tool( |
|
task_or_repo_id="document_question_answering", |
|
model_repo_id="deepset/roberta-base-squad2" |
|
) |
|
|
|
web_tool = load_tool( |
|
task_or_repo_id="search" |
|
) |
|
|
|
python_tool = load_tool( |
|
task_or_repo_id="python_repl" |
|
) |
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
print("BasicAgent initialized with real tools.") |
|
|
|
self.agent = ReactAgent( |
|
tools=[qa_tool, web_tool, python_tool], |
|
llm_engine="openai/chat:gpt-3.5-turbo", |
|
verbose=True |
|
) |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
try: |
|
answer = self.agent.run(question) |
|
print(f"Agent returning answer: {answer}") |
|
return answer |
|
except Exception as e: |
|
print(f"Error in agent execution: {e}") |
|
return f"AGENT ERROR: {e}" |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = profile.username |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(f"Agent code at: {agent_code}") |
|
|
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "Fetched questions list is empty or invalid format.", None |
|
except Exception as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
continue |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer |
|
}) |
|
|
|
if not answers_payload: |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except Exception as e: |
|
print(f"Submission error: {e}") |
|
results_df = pd.DataFrame(results_log) |
|
return f"Submission Failed: {e}", results_df |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Clone this space and modify the code to define your agent's logic and tools. |
|
2. Log in with Hugging Face to submit under your username. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, and submit. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("Launching Gradio App...") |
|
demo.launch(debug=True, share=False) |
|
|