|
import os |
|
from dotenv import load_dotenv |
|
|
|
from langgraph.graph import StateGraph, START, MessagesState |
|
from langgraph.prebuilt import ToolNode, tools_condition |
|
|
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
|
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
|
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
|
|
from supabase.client import create_client, Client |
|
|
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Returns the product of two integers.""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Returns the sum of two integers.""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Returns the difference between two integers.""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Performs division and handles zero division errors.""" |
|
if b == 0: |
|
raise ValueError("Division by zero is undefined.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Returns the remainder after division.""" |
|
return a % b |
|
|
|
|
|
|
|
@tool |
|
def search_wikipedia(query: str) -> str: |
|
"""Returns up to 2 documents related to a query from Wikipedia.""" |
|
docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
return {"wiki_results": "\n\n---\n\n".join( |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}' |
|
for doc in docs |
|
)} |
|
|
|
@tool |
|
def search_web(query: str) -> str: |
|
"""Fetches up to 3 web results using Tavily.""" |
|
results = TavilySearchResults(max_results=3).invoke(query=query) |
|
return {"web_results": "\n\n---\n\n".join( |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}' |
|
for doc in results |
|
)} |
|
|
|
@tool |
|
def search_arxiv(query: str) -> str: |
|
"""Retrieves up to 3 papers related to the query from ArXiv.""" |
|
results = ArxivLoader(query=query, load_max_docs=3).load() |
|
return {"arvix_results": "\n\n---\n\n".join( |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}' |
|
for doc in results |
|
)} |
|
|
|
|
|
system_message = SystemMessage(content="""You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: |
|
|
|
FINAL ANSWER: [YOUR FINAL ANSWER] |
|
|
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma-separated list of numbers and/or strings. |
|
- If you are asked for a number, don't use a comma in the number and avoid units like $ or % unless specified otherwise. |
|
- If you are asked for a string, avoid using articles and abbreviations (e.g. for cities), and write digits in plain text unless specified otherwise. |
|
- If you are asked for a comma-separated list, apply the above rules depending on whether each item is a number or string. |
|
|
|
Your answer should start only with "Responce: ", followed by your result.""") |
|
|
|
toolset = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
search_wikipedia, |
|
search_web, |
|
search_arxiv, |
|
] |
|
|
|
|
|
|
|
def create_agent_flow(provider: str = "groq"): |
|
"""Constructs the LangGraph conversational flow with tool support.""" |
|
|
|
if provider == "google": |
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) |
|
elif provider == "huggingface": |
|
llm = ChatHuggingFace(llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0 |
|
)) |
|
else: |
|
raise ValueError("Unsupported provider. Choose from: 'google', 'groq', 'huggingface'.") |
|
|
|
llm_toolchain = llm.bind_tools(toolset) |
|
|
|
|
|
def assistant_node(state: MessagesState): |
|
response = llm_toolchain.invoke(state["messages"]) |
|
return {"messages": [response]} |
|
|
|
|
|
|
|
graph = StateGraph(MessagesState) |
|
graph.add_node("assistant", assistant_node) |
|
graph.add_node("tools", ToolNode(toolset)) |
|
graph.add_edge(START, "retriever") |
|
graph.add_edge("retriever", "assistant") |
|
graph.add_conditional_edges("assistant", tools_condition) |
|
graph.add_edge("tools", "assistant") |
|
|
|
return graph.compile() |