|
|
import os |
|
|
import gradio as gr |
|
|
import requests |
|
|
import inspect |
|
|
import pandas as pd |
|
|
from smolagents import CodeAgent, HfApiModel, DuckDuckGoSearchTool |
|
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
class BasicAgent: |
|
|
def __init__(self): |
|
|
print("Initializing Smolagents CodeAgent...") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model = HfApiModel( |
|
|
model_id="Qwen/Qwen2.5-Coder-32B-Instruct", |
|
|
) |
|
|
|
|
|
|
|
|
search_tool = DuckDuckGoSearchTool() |
|
|
|
|
|
|
|
|
|
|
|
self.agent = CodeAgent( |
|
|
tools=[search_tool], |
|
|
model=model, |
|
|
additional_authorized_imports=["requests", "bs4", "datetime", "pandas", "math"], |
|
|
max_steps=20, |
|
|
verbosity_level=1 |
|
|
) |
|
|
print("Agent initialized successfully.") |
|
|
|
|
|
def __call__(self, question: str) -> str: |
|
|
print(f"Agent received question: {question}") |
|
|
try: |
|
|
|
|
|
|
|
|
answer = self.agent.run(question) |
|
|
print(f"Agent calculated answer: {answer}") |
|
|
return str(answer) |
|
|
except Exception as e: |
|
|
print(f"Agent failed with error: {e}") |
|
|
return "Error processing request" |
|
|
|
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
|
""" |
|
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
|
and displays the results. |
|
|
""" |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
|
|
|
|
if profile: |
|
|
username = f"{profile.username}" |
|
|
print(f"User logged in: {username}") |
|
|
else: |
|
|
print("User not logged in.") |
|
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
|
|
api_url = DEFAULT_API_URL |
|
|
questions_url = f"{api_url}/questions" |
|
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
|
|
|
try: |
|
|
agent = BasicAgent() |
|
|
except Exception as e: |
|
|
print(f"Error instantiating agent: {e}") |
|
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "https://huggingface.co/spaces/generic/tree/main" |
|
|
print(agent_code) |
|
|
|
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
|
try: |
|
|
response = requests.get(questions_url, timeout=15) |
|
|
response.raise_for_status() |
|
|
questions_data = response.json() |
|
|
if not questions_data: |
|
|
print("Fetched questions list is empty.") |
|
|
return "Fetched questions list is empty or invalid format.", None |
|
|
print(f"Fetched {len(questions_data)} questions.") |
|
|
except requests.exceptions.RequestException as e: |
|
|
print(f"Error fetching questions: {e}") |
|
|
return f"Error fetching questions: {e}", None |
|
|
except Exception as e: |
|
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
|
|
|
results_log = [] |
|
|
answers_payload = [] |
|
|
print(f"Running agent on {len(questions_data)} questions...") |
|
|
|
|
|
for i, item in enumerate(questions_data): |
|
|
task_id = item.get("task_id") |
|
|
question_text = item.get("question") |
|
|
|
|
|
print(f"Processing {i+1}/{len(questions_data)}: Task {task_id}") |
|
|
|
|
|
if not task_id or question_text is None: |
|
|
continue |
|
|
|
|
|
try: |
|
|
|
|
|
submitted_answer = agent(question_text) |
|
|
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
|
except Exception as e: |
|
|
print(f"Error running agent on task {task_id}: {e}") |
|
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
|
|
if not answers_payload: |
|
|
print("Agent did not produce any answers to submit.") |
|
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
|
print(status_update) |
|
|
|
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
|
try: |
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
|
response.raise_for_status() |
|
|
result_data = response.json() |
|
|
final_status = ( |
|
|
f"Submission Successful!\n" |
|
|
f"User: {result_data.get('username')}\n" |
|
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
|
) |
|
|
print("Submission successful.") |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return final_status, results_df |
|
|
except Exception as e: |
|
|
status_message = f"Submission Failed: {e}" |
|
|
print(status_message) |
|
|
results_df = pd.DataFrame(results_log) |
|
|
return status_message, results_df |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown("# Final Agent Evaluation Runner (SmolAgents)") |
|
|
gr.Markdown( |
|
|
""" |
|
|
**Instructions:** |
|
|
1. Ensure `HF_TOKEN` is set in your Space Secrets. |
|
|
2. Log in via the button below. |
|
|
3. Click 'Run Evaluation'. |
|
|
|
|
|
*Note: This process takes a few minutes as the agent thinks through 10-20 questions.* |
|
|
""" |
|
|
) |
|
|
|
|
|
gr.LoginButton() |
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") |
|
|
status_output = gr.Textbox(label="Status", lines=5, interactive=False) |
|
|
results_table = gr.DataFrame(label="Results", wrap=True) |
|
|
|
|
|
run_button.click( |
|
|
fn=run_and_submit_all, |
|
|
outputs=[status_output, results_table] |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |