Ragulvasanth66's picture
update the lesson
9033f49 verified
raw
history blame
6.05 kB
# --- Standard Library Imports ---
import os
import requests
import pandas as pd
import gradio as gr
from typing import Union
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# You should modify this class to improve agent behavior.
class BasicAgent:
def __init__(self):
print("βœ… BasicAgent initialized.")
def __call__(self, question: str) -> str:
# Print the incoming question (preview)
print(f"πŸ€– Agent received question: {question[:50]}...")
# Your logic goes here β€” modify as needed.
fixed_answer = "This is a default answer." # You can replace this with dynamic generation.
print(f"πŸ“€ Agent returns: {fixed_answer}")
return fixed_answer
# --- Core Evaluation Logic ---
def run_and_submit_all(profile: Union[gr.OAuthProfile, None]):
"""
Core function that:
- Initializes the agent
- Fetches questions
- Generates answers
- Submits them to the scoring API
- Returns the final result and answers DataFrame
"""
space_id = os.getenv("SPACE_ID") # Optional but used to link to the repo
if profile:
username = profile.username
print(f"πŸ‘€ Logged in user: {username}")
else:
print("⚠️ User not logged in.")
return "Please login using Hugging Face Login button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Not available"
# 1. Instantiate the agent
try:
agent = BasicAgent()
except Exception as e:
return f"❌ Error initializing agent: {e}", None
# 2. Fetch questions
print(f"πŸ“₯ Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "❌ Fetched questions list is empty or invalid.", None
print(f"βœ… {len(questions_data)} questions fetched.")
except Exception as e:
return f"❌ Error fetching questions: {e}", None
# 3. Run the agent on all questions
results_log = []
answers_payload = []
print("🧠 Running agent on questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e:
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
return "❌ Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username,
"agent_code": agent_code,
"answers": answers_payload
}
print(f"πŸš€ Submitting {len(answers_payload)} answers...")
# 5. Submit answers to scoring endpoint
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"βœ… Submission Successful!\n"
f"πŸ‘€ User: {result_data.get('username')}\n"
f"πŸ“Š Score: {result_data.get('score')}% "
f"({result_data.get('correct_count')}/{result_data.get('total_attempted')} correct)\n"
f"πŸ“ Message: {result_data.get('message', 'No message.')}"
)
return final_status, pd.DataFrame(results_log)
except requests.exceptions.HTTPError as e:
return f"❌ Submission Failed (HTTP error): {e}", pd.DataFrame(results_log)
except requests.exceptions.Timeout:
return "❌ Submission Failed: Request timed out.", pd.DataFrame(results_log)
except Exception as e:
return f"❌ Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio UI Setup ---
with gr.Blocks() as demo:
gr.Markdown("# πŸ€– Basic Agent Evaluation Tool")
gr.Markdown("""
### πŸ›  Instructions:
1. Clone this Hugging Face Space.
2. Implement your own logic in the `BasicAgent` class.
3. Login with your Hugging Face account.
4. Press the button to run all questions through your agent and submit.
**Note:** It may take some time depending on the number of questions and agent logic.
""")
# Login and button interface
gr.LoginButton()
run_button = gr.Button("▢️ Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="πŸ“ Submission Status", lines=5, interactive=False)
results_table = gr.DataFrame(label="πŸ“„ Agent Answers Log", wrap=True)
# Hook button click to function
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
# --- Local App Runner ---
if __name__ == "__main__":
print("\n" + "-" * 30 + " πŸš€ App Starting " + "-" * 30)
space_host = os.getenv("SPACE_HOST")
space_id = os.getenv("SPACE_ID")
if space_host:
print(f"βœ… SPACE_HOST: {space_host}")
print(f"🌍 App URL: https://{space_host}.hf.space")
else:
print("ℹ️ SPACE_HOST not found (running locally?)")
if space_id:
print(f"βœ… SPACE_ID: {space_id}")
print(f"πŸ“¦ Repo: https://huggingface.co/spaces/{space_id}")
else:
print("ℹ️ SPACE_ID not set")
print("-" * 60)
print("πŸ”§ Launching Gradio app...")
demo.launch(debug=True, share=False)