Spaces:
Runtime error
Runtime error
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from transformers import pipeline
|
4 |
+
from typing import Dict
|
5 |
+
from together import Together
|
6 |
+
|
7 |
+
# Image-to-text
|
8 |
+
def img2txt(url: str) -> str:
|
9 |
+
print("Initializing captioning model...")
|
10 |
+
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
11 |
+
|
12 |
+
print("Generating text from the image...")
|
13 |
+
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
|
14 |
+
|
15 |
+
print(text)
|
16 |
+
return text
|
17 |
+
|
18 |
+
# Text-to-story generation with LLM model
|
19 |
+
def txt2story(prompt: str, top_k: int, top_p: float, temperature: float) -> str:
|
20 |
+
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
|
21 |
+
|
22 |
+
story_prompt = f"Write a short story of no more than 250 words based on the following prompt: {prompt}"
|
23 |
+
|
24 |
+
stream = client.chat.completions.create(
|
25 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
26 |
+
messages=[
|
27 |
+
{"role": "system", "content": '''As an experienced short story writer, write a meaningful story influenced by the provided prompt.
|
28 |
+
Ensure the story does not exceed 250 words.'''},
|
29 |
+
{"role": "user", "content": story_prompt}
|
30 |
+
],
|
31 |
+
top_k=top_k,
|
32 |
+
top_p=top_p,
|
33 |
+
temperature=temperature,
|
34 |
+
stream=True
|
35 |
+
)
|
36 |
+
|
37 |
+
story = ''
|
38 |
+
for chunk in stream:
|
39 |
+
story += chunk.choices[0].delta.content
|
40 |
+
|
41 |
+
return story
|
42 |
+
|
43 |
+
# Text-to-speech
|
44 |
+
def txt2speech(text: str) -> None:
|
45 |
+
print("Initializing text-to-speech conversion...")
|
46 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
47 |
+
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
|
48 |
+
payloads = {'inputs': text}
|
49 |
+
|
50 |
+
response = requests.post(API_URL, headers=headers, json=payloads)
|
51 |
+
|
52 |
+
with open('audio_story.mp3', 'wb') as file:
|
53 |
+
file.write(response.content)
|
54 |
+
|
55 |
+
# Get user preferences for the story
|
56 |
+
def get_user_preferences(st) -> Dict[str, str]:
|
57 |
+
preferences = {}
|
58 |
+
|
59 |
+
preferences['continent'] = st.selectbox("Continent", ["North America", "Europe", "Asia", "Africa", "Australia"])
|
60 |
+
preferences['genre'] = st.selectbox("Genre", ["Science Fiction", "Fantasy", "Mystery", "Romance"])
|
61 |
+
preferences['setting'] = st.selectbox("Setting", ["Future", "Medieval times", "Modern day", "Alternate reality"])
|
62 |
+
preferences['plot'] = st.selectbox("Plot", ["Hero's journey", "Solving a mystery", "Love story", "Survival"])
|
63 |
+
preferences['tone'] = st.selectbox("Tone", ["Serious", "Light-hearted", "Humorous", "Dark"])
|
64 |
+
preferences['theme'] = st.selectbox("Theme", ["Self-discovery", "Redemption", "Love", "Justice"])
|
65 |
+
preferences['conflict'] = st.selectbox("Conflict Type", ["Person vs. Society", "Internal struggle", "Person vs. Nature", "Person vs. Person"])
|
66 |
+
preferences['twist'] = st.selectbox("Mystery/Twist", ["Plot twist", "Hidden identity", "Unexpected ally/enemy", "Time paradox"])
|
67 |
+
preferences['ending'] = st.selectbox("Ending", ["Happy", "Bittersweet", "Open-ended", "Tragic"])
|
68 |
+
|
69 |
+
return preferences
|