Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- Dockerfile +22 -0
- app.py +137 -0
- requirements.txt +7 -0
- uploaded_image.jpg +0 -0
Dockerfile
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight Python 3.9 image as the base
|
2 |
+
FROM python:3.9.20-slim-bullseye
|
3 |
+
|
4 |
+
# Set the working directory within the container where your application code resides
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements.txt file that specifies application's dependencies
|
8 |
+
COPY requirements.txt ./
|
9 |
+
|
10 |
+
# Install the dependencies listed in requirements.txt using pip3
|
11 |
+
RUN pip3 install --upgrade pip && pip3 install -r requirements.txt
|
12 |
+
|
13 |
+
# Copy all files from the current directory (.) on the host machine
|
14 |
+
# to the /app directory within the container
|
15 |
+
COPY . .
|
16 |
+
|
17 |
+
# Expose port 8501 to make Streamlit application accessible from outside the container
|
18 |
+
EXPOSE 8501
|
19 |
+
|
20 |
+
# Define the command to execute when the container starts. This will run Streamlit
|
21 |
+
# and execute your application code located in app.py
|
22 |
+
CMD ["streamlit", "run", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
from transformers import pipeline
|
5 |
+
from typing import Dict
|
6 |
+
from together import Together
|
7 |
+
|
8 |
+
# Image-to-text
|
9 |
+
def img2txt(url: str) -> str:
|
10 |
+
print("Initializing captioning model...")
|
11 |
+
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
12 |
+
|
13 |
+
print("Generating text from the image...")
|
14 |
+
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
|
15 |
+
|
16 |
+
print(text)
|
17 |
+
return text
|
18 |
+
|
19 |
+
# Text-to-story generation with LLM model
|
20 |
+
def txt2story(prompt: str, top_k: int, top_p: float, temperature: float) -> str:
|
21 |
+
# Load the Together API client
|
22 |
+
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
|
23 |
+
|
24 |
+
# Modify the prompt based on user inputs and ensure a 250-word limit
|
25 |
+
story_prompt = f"Write a short story of no more than 250 words based on the following prompt: {prompt}"
|
26 |
+
|
27 |
+
# Call the LLM model
|
28 |
+
stream = client.chat.completions.create(
|
29 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
30 |
+
messages=[
|
31 |
+
{"role": "system", "content": '''As an experienced short story writer, write a meaningful story influenced by the provided prompt.
|
32 |
+
Ensure the story does not exceed 250 words.'''},
|
33 |
+
{"role": "user", "content": story_prompt}
|
34 |
+
],
|
35 |
+
top_k=top_k,
|
36 |
+
top_p=top_p,
|
37 |
+
temperature=temperature,
|
38 |
+
stream=True
|
39 |
+
)
|
40 |
+
|
41 |
+
# Concatenate story chunks
|
42 |
+
story = ''
|
43 |
+
for chunk in stream:
|
44 |
+
story += chunk.choices[0].delta.content
|
45 |
+
|
46 |
+
return story
|
47 |
+
|
48 |
+
# Text-to-speech
|
49 |
+
def txt2speech(text: str) -> None:
|
50 |
+
print("Initializing text-to-speech conversion...")
|
51 |
+
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
52 |
+
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
|
53 |
+
payloads = {'inputs': text}
|
54 |
+
|
55 |
+
response = requests.post(API_URL, headers=headers, json=payloads)
|
56 |
+
|
57 |
+
with open('audio_story.mp3', 'wb') as file:
|
58 |
+
file.write(response.content)
|
59 |
+
|
60 |
+
# Get user preferences for the story
|
61 |
+
def get_user_preferences() -> Dict[str, str]:
|
62 |
+
preferences = {}
|
63 |
+
|
64 |
+
preferences['continent'] = st.selectbox("Continent", ["North America", "Europe", "Asia", "Africa", "Australia"])
|
65 |
+
preferences['genre'] = st.selectbox("Genre", ["Science Fiction", "Fantasy", "Mystery", "Romance"])
|
66 |
+
preferences['setting'] = st.selectbox("Setting", ["Future", "Medieval times", "Modern day", "Alternate reality"])
|
67 |
+
preferences['plot'] = st.selectbox("Plot", ["Hero's journey", "Solving a mystery", "Love story", "Survival"])
|
68 |
+
preferences['tone'] = st.selectbox("Tone", ["Serious", "Light-hearted", "Humorous", "Dark"])
|
69 |
+
preferences['theme'] = st.selectbox("Theme", ["Self-discovery", "Redemption", "Love", "Justice"])
|
70 |
+
preferences['conflict'] = st.selectbox("Conflict Type", ["Person vs. Society", "Internal struggle", "Person vs. Nature", "Person vs. Person"])
|
71 |
+
preferences['twist'] = st.selectbox("Mystery/Twist", ["Plot twist", "Hidden identity", "Unexpected ally/enemy", "Time paradox"])
|
72 |
+
preferences['ending'] = st.selectbox("Ending", ["Happy", "Bittersweet", "Open-ended", "Tragic"])
|
73 |
+
|
74 |
+
return preferences
|
75 |
+
|
76 |
+
# Main function
|
77 |
+
def main():
|
78 |
+
st.set_page_config(page_title="π¨ Image-to-Audio Story π§", page_icon="πΌοΈ")
|
79 |
+
st.title("Turn the Image into Audio Story")
|
80 |
+
|
81 |
+
# Allows users to upload an image file
|
82 |
+
uploaded_file = st.file_uploader("# π· Upload an image...", type=["jpg", "jpeg", "png"])
|
83 |
+
|
84 |
+
# Parameters for LLM model (in the sidebar)
|
85 |
+
st.sidebar.markdown("# LLM Inference Configuration Parameters")
|
86 |
+
top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5)
|
87 |
+
top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8)
|
88 |
+
temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5)
|
89 |
+
|
90 |
+
# Get user preferences for the story
|
91 |
+
st.markdown("## Story Preferences")
|
92 |
+
preferences = get_user_preferences()
|
93 |
+
|
94 |
+
if uploaded_file is not None:
|
95 |
+
# Reads and saves uploaded image file
|
96 |
+
bytes_data = uploaded_file.read()
|
97 |
+
with open("uploaded_image.jpg", "wb") as file:
|
98 |
+
file.write(bytes_data)
|
99 |
+
|
100 |
+
st.image(uploaded_file, caption='πΌοΈ Uploaded Image', use_column_width=True)
|
101 |
+
|
102 |
+
# Initiates AI processing and story generation
|
103 |
+
with st.spinner("## π€ AI is at Work! "):
|
104 |
+
scenario = img2txt("uploaded_image.jpg") # Extracts text from the image
|
105 |
+
|
106 |
+
# Modify the prompt to include user preferences
|
107 |
+
prompt = f"Based on the image description: '{scenario}', create a {preferences['genre']} story set in {preferences['setting']} in {preferences['continent']}. " \
|
108 |
+
f"The story should have a {preferences['tone']} tone and explore the theme of {preferences['theme']}. " \
|
109 |
+
f"The main conflict should be {preferences['conflict']}. " \
|
110 |
+
f"The story should have a {preferences['twist']} and end with a {preferences['ending']} ending."
|
111 |
+
|
112 |
+
story = txt2story(prompt, top_k, top_p, temperature) # Generates a story based on the image text, LLM params, and user preferences
|
113 |
+
|
114 |
+
txt2speech(story) # Converts the story to audio
|
115 |
+
|
116 |
+
st.markdown("---")
|
117 |
+
st.markdown("## π Image Caption")
|
118 |
+
st.write(scenario)
|
119 |
+
|
120 |
+
st.markdown("---")
|
121 |
+
st.markdown("## π Story")
|
122 |
+
st.write(story)
|
123 |
+
|
124 |
+
st.markdown("---")
|
125 |
+
st.markdown("## π§ Audio Story")
|
126 |
+
st.audio("audio_story.mp3")
|
127 |
+
|
128 |
+
if __name__ == '__main__':
|
129 |
+
main()
|
130 |
+
|
131 |
+
# Credits
|
132 |
+
st.markdown("### Credits")
|
133 |
+
st.caption('''
|
134 |
+
Made with β€οΈ by @Aditya-Neural-Net-Ninja\n
|
135 |
+
Utilizes Image-to-Text, Text Generation, Text-to-Speech Transformer Models\n
|
136 |
+
Gratitude to Streamlit, π€ Spaces for Deployment & Hosting
|
137 |
+
''')
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tf-keras==2.17.0
|
2 |
+
tensorflow==2.17.0
|
3 |
+
transformers==4.45.1
|
4 |
+
huggingface_hub==0.25.1
|
5 |
+
pillow==10.4.0
|
6 |
+
streamlit==1.38.0
|
7 |
+
together==1.3.0
|
uploaded_image.jpg
ADDED
![]() |