LLaVA / docs /ScienceQA.md
badayvedat's picture
feat: Add LLaVA model
a824a18
### ScienceQA
#### Prepare Data
1. Please see ScienceQA [repo](https://github.com/lupantech/ScienceQA) for setting up the dataset.
2. Generate ScienceQA dataset for LLaVA conversation-style format.
```Shell
python scripts/convert_sqa_to_llava.py \
convert_to_llava \
--base-dir /path/to/ScienceQA/data/scienceqa \
--prompt-format "QCM-LEA" \
--split {train,val,minival,test,minitest}
```
#### Training
1. Pretraining
You can download our pretrained projector weights from our [Model Zoo](), or train your own projector weights using [`pretrain.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/pretrain.sh).
2. Finetuning
See [`finetune_sqa.sh`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/finetune_sqa.sh).
#### Evaluation
1. Multiple-GPU inference
You may evaluate this with multiple GPUs, and concatenate the generated jsonl files. Please refer to our script for [batch evaluation](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_batch.sh) and [results gathering](https://github.com/haotian-liu/LLaVA/blob/main/scripts/sqa_eval_gather.sh).
2. Single-GPU inference
(a) Generate LLaVA responses on ScienceQA dataset
```Shell
python -m llava.eval.model_vqa_science \
--model-path liuhaotian/llava-lcs558k-scienceqa-vicuna-13b-v1.3 \
--question-file /path/to/ScienceQA/data/scienceqa/llava_test_QCM-LEA.json \
--image-folder /path/to/ScienceQA/data/scienceqa/images/test \
--answers-file vqa/results/ScienceQA/test_llava-13b.jsonl \
--conv-mode llava_v1
```
(b) Evaluate the generated responses
```Shell
python eval_science_qa.py \
--base-dir /path/to/ScienceQA/data/scienceqa \
--result-file vqa/results/ScienceQA/test_llava-13b.jsonl \
--output-file vqa/results/ScienceQA/test_llava-13b_output.json \
--output-result vqa/results/ScienceQA/test_llava-13b_result.json \
```
For reference, we attach our prediction file [`test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_lcs_558k_sqa_12e_vicuna_v1_3_13b.json) and [`test_sqa_llava_13b_v0.json`](https://github.com/haotian-liu/LLaVA/blob/main/llava/eval/table/results/test_sqa_llava_13b_v0.json) for comparison when reproducing our results, as well as for further analysis in detail.