Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import comfy.model_management | |
import comfy.sampler_helpers | |
import comfy.samplers | |
import comfy.utils | |
import node_helpers | |
def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale): | |
pos = noise_pred_pos - noise_pred_nocond | |
neg = noise_pred_neg - noise_pred_nocond | |
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos | |
perp_neg = perp * neg_scale | |
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg) | |
return cfg_result | |
#TODO: This node should be removed, it has been replaced with PerpNegGuider | |
class PerpNeg: | |
def INPUT_TYPES(s): | |
return {"required": {"model": ("MODEL", ), | |
"empty_conditioning": ("CONDITIONING", ), | |
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "patch" | |
CATEGORY = "_for_testing" | |
def patch(self, model, empty_conditioning, neg_scale): | |
m = model.clone() | |
nocond = comfy.sampler_helpers.convert_cond(empty_conditioning) | |
def cfg_function(args): | |
model = args["model"] | |
noise_pred_pos = args["cond_denoised"] | |
noise_pred_neg = args["uncond_denoised"] | |
cond_scale = args["cond_scale"] | |
x = args["input"] | |
sigma = args["sigma"] | |
model_options = args["model_options"] | |
nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative") | |
(noise_pred_nocond,) = comfy.samplers.calc_cond_batch(model, [nocond_processed], x, sigma, model_options) | |
cfg_result = x - perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale) | |
return cfg_result | |
m.set_model_sampler_cfg_function(cfg_function) | |
return (m, ) | |
class Guider_PerpNeg(comfy.samplers.CFGGuider): | |
def set_conds(self, positive, negative, empty_negative_prompt): | |
empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"}) | |
self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative}) | |
def set_cfg(self, cfg, neg_scale): | |
self.cfg = cfg | |
self.neg_scale = neg_scale | |
def predict_noise(self, x, timestep, model_options={}, seed=None): | |
# in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg | |
# but we'd rather do a single batch of sampling pos, neg, and empty, so we call calc_cond_batch([pos,neg,empty]) directly | |
positive_cond = self.conds.get("positive", None) | |
negative_cond = self.conds.get("negative", None) | |
empty_cond = self.conds.get("empty_negative_prompt", None) | |
(noise_pred_pos, noise_pred_neg, noise_pred_empty) = \ | |
comfy.samplers.calc_cond_batch(self.inner_model, [positive_cond, negative_cond, empty_cond], x, timestep, model_options) | |
cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg) | |
# normally this would be done in cfg_function, but we skipped | |
# that for efficiency: we can compute the noise predictions in | |
# a single call to calc_cond_batch() (rather than two) | |
# so we replicate the hook here | |
for fn in model_options.get("sampler_post_cfg_function", []): | |
args = { | |
"denoised": cfg_result, | |
"cond": positive_cond, | |
"uncond": negative_cond, | |
"model": self.inner_model, | |
"uncond_denoised": noise_pred_neg, | |
"cond_denoised": noise_pred_pos, | |
"sigma": timestep, | |
"model_options": model_options, | |
"input": x, | |
# not in the original call in samplers.py:cfg_function, but made available for future hooks | |
"empty_cond": empty_cond, | |
"empty_cond_denoised": noise_pred_empty,} | |
cfg_result = fn(args) | |
return cfg_result | |
class PerpNegGuider: | |
def INPUT_TYPES(s): | |
return {"required": | |
{"model": ("MODEL",), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"empty_conditioning": ("CONDITIONING", ), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("GUIDER",) | |
FUNCTION = "get_guider" | |
CATEGORY = "_for_testing" | |
def get_guider(self, model, positive, negative, empty_conditioning, cfg, neg_scale): | |
guider = Guider_PerpNeg(model) | |
guider.set_conds(positive, negative, empty_conditioning) | |
guider.set_cfg(cfg, neg_scale) | |
return (guider,) | |
NODE_CLASS_MAPPINGS = { | |
"PerpNeg": PerpNeg, | |
"PerpNegGuider": PerpNegGuider, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"PerpNeg": "Perp-Neg (DEPRECATED by PerpNegGuider)", | |
} | |