Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import json | |
import os | |
import random | |
from warnings import filterwarnings | |
import gradio as gr | |
from diffusers.utils import logging as diffusers_logging | |
from transformers import logging as transformers_logging | |
from lib import Config, async_call, download_repo_files, generate, read_file | |
filterwarnings("ignore", category=FutureWarning, module="diffusers") | |
filterwarnings("ignore", category=FutureWarning, module="transformers") | |
diffusers_logging.set_verbosity_error() | |
transformers_logging.set_verbosity_error() | |
diffusers_logging.disable_progress_bar() | |
transformers_logging.disable_progress_bar() | |
# the CSS `content` attribute expects a string so we need to wrap the number in quotes | |
refresh_seed_js = """ | |
() => { | |
const n = Math.floor(Math.random() * Number.MAX_SAFE_INTEGER); | |
const button = document.getElementById("refresh"); | |
button.style.setProperty("--seed", `"${n}"`); | |
return n; | |
} | |
""" | |
seed_js = """ | |
(seed) => { | |
const button = document.getElementById("refresh"); | |
button.style.setProperty("--seed", `"${seed}"`); | |
return seed; | |
} | |
""" | |
aspect_ratio_js = """ | |
(ar, w, h) => { | |
if (!ar) return [w, h]; | |
const [width, height] = ar.split(","); | |
return [parseInt(width), parseInt(height)]; | |
} | |
""" | |
def random_fn(): | |
prompts = read_file("data/prompts.json") | |
prompts = json.loads(prompts) | |
return gr.Textbox(value=random.choice(prompts)) | |
async def generate_fn(*args, progress=gr.Progress(track_tqdm=True)): | |
if len(args) > 0: | |
prompt = args[0] | |
else: | |
prompt = None | |
if prompt is None or prompt.strip() == "": | |
raise gr.Error("You must enter a prompt") | |
try: | |
if Config.ZERO_GPU: | |
progress((0, 100), desc="ZeroGPU init") | |
images = await async_call( | |
generate, | |
*args, | |
Error=gr.Error, | |
Info=gr.Info, | |
progress=progress, | |
) | |
except RuntimeError: | |
raise gr.Error("Please try again later") | |
return images | |
with gr.Blocks( | |
head=read_file("./partials/head.html"), | |
css="./app.css", | |
js="./app.js", | |
theme=gr.themes.Default( | |
# colors | |
neutral_hue=gr.themes.colors.gray, | |
primary_hue=gr.themes.colors.orange, | |
secondary_hue=gr.themes.colors.blue, | |
# sizing | |
text_size=gr.themes.sizes.text_md, | |
radius_size=gr.themes.sizes.radius_sm, | |
spacing_size=gr.themes.sizes.spacing_md, | |
# fonts | |
font=[gr.themes.GoogleFont("Inter"), *Config.SANS_FONTS], | |
font_mono=[gr.themes.GoogleFont("Ubuntu Mono"), *Config.MONO_FONTS], | |
).set( | |
layout_gap="8px", | |
block_shadow="0 0 #0000", | |
block_shadow_dark="0 0 #0000", | |
block_background_fill=gr.themes.colors.gray.c50, | |
block_background_fill_dark=gr.themes.colors.gray.c900, | |
), | |
) as demo: | |
gr.HTML(read_file("./partials/intro.html")) | |
with gr.Tabs(): | |
with gr.TabItem("🏠 Home"): | |
with gr.Column(): | |
with gr.Group(): | |
output_images = gr.Gallery( | |
elem_classes=["gallery"], | |
show_share_button=False, | |
object_fit="cover", | |
interactive=False, | |
show_label=False, | |
label="Output", | |
format="png", | |
columns=2, | |
) | |
prompt = gr.Textbox( | |
placeholder="What do you want to see?", | |
autoscroll=False, | |
show_label=False, | |
label="Prompt", | |
max_lines=3, | |
lines=3, | |
) | |
# Buttons | |
with gr.Row(): | |
generate_btn = gr.Button("Generate", variant="primary") | |
random_btn = gr.Button( | |
elem_classes=["icon-button", "popover"], | |
variant="secondary", | |
elem_id="random", | |
min_width=0, | |
value="🎲", | |
) | |
refresh_btn = gr.Button( | |
elem_classes=["icon-button", "popover"], | |
variant="secondary", | |
elem_id="refresh", | |
min_width=0, | |
value="🔄", | |
) | |
clear_btn = gr.ClearButton( | |
elem_classes=["icon-button", "popover"], | |
components=[output_images], | |
variant="secondary", | |
elem_id="clear", | |
min_width=0, | |
value="🗑️", | |
) | |
with gr.TabItem("⚙️ Menu"): | |
with gr.Group(): | |
negative_prompt = gr.Textbox( | |
value="nsfw+", | |
label="Negative Prompt", | |
lines=2, | |
) | |
with gr.Row(): | |
model = gr.Dropdown( | |
choices=Config.MODELS, | |
filterable=False, | |
value=Config.MODEL, | |
label="Model", | |
min_width=240, | |
) | |
scheduler = gr.Dropdown( | |
choices=Config.SCHEDULERS.keys(), | |
value=Config.SCHEDULER, | |
elem_id="scheduler", | |
label="Scheduler", | |
filterable=False, | |
) | |
with gr.Row(): | |
styles = json.loads(read_file("data/styles.json")) | |
style_ids = list(styles.keys()) | |
style_ids = [sid for sid in style_ids if not sid.startswith("_")] | |
style = gr.Dropdown( | |
value=Config.STYLE, | |
label="Style", | |
min_width=240, | |
choices=[("None", None)] + [(styles[sid]["name"], sid) for sid in style_ids], | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
value=Config.GUIDANCE_SCALE, | |
label="Guidance Scale", | |
minimum=1.0, | |
maximum=15.0, | |
step=0.1, | |
) | |
inference_steps = gr.Slider( | |
value=Config.INFERENCE_STEPS, | |
label="Inference Steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
) | |
deepcache_interval = gr.Slider( | |
value=Config.DEEPCACHE_INTERVAL, | |
label="DeepCache", | |
minimum=1, | |
maximum=4, | |
step=1, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
value=Config.WIDTH, | |
label="Width", | |
minimum=512, | |
maximum=1536, | |
step=64, | |
) | |
height = gr.Slider( | |
value=Config.HEIGHT, | |
label="Height", | |
minimum=512, | |
maximum=1536, | |
step=64, | |
) | |
aspect_ratio = gr.Dropdown( | |
value=f"{Config.WIDTH},{Config.HEIGHT}", | |
label="Aspect Ratio", | |
filterable=False, | |
choices=[ | |
("Custom", None), | |
("4:7 (768x1344)", "768,1344"), | |
("7:9 (896x1152)", "896,1152"), | |
("1:1 (1024x1024)", "1024,1024"), | |
("9:7 (1152x896)", "1152,896"), | |
("7:4 (1344x768)", "1344,768"), | |
], | |
) | |
with gr.Row(): | |
file_format = gr.Dropdown( | |
choices=["png", "jpeg", "webp"], | |
label="File Format", | |
filterable=False, | |
value="png", | |
) | |
num_images = gr.Dropdown( | |
choices=list(range(1, 5)), | |
value=Config.NUM_IMAGES, | |
filterable=False, | |
label="Images", | |
) | |
scale = gr.Dropdown( | |
choices=[(f"{s}x", s) for s in Config.SCALES], | |
filterable=False, | |
value=Config.SCALE, | |
label="Scale", | |
) | |
seed = gr.Number( | |
value=Config.SEED, | |
label="Seed", | |
minimum=-1, | |
maximum=(2**64) - 1, | |
) | |
with gr.Row(): | |
use_karras = gr.Checkbox( | |
elem_classes=["checkbox"], | |
label="Karras σ", | |
value=True, | |
) | |
use_refiner = gr.Checkbox( | |
elem_classes=["checkbox"], | |
label="Refiner", | |
value=False, | |
) | |
random_btn.click(random_fn, inputs=[], outputs=[prompt], show_api=False) | |
refresh_btn.click(None, inputs=[], outputs=[seed], js=refresh_seed_js) | |
seed.change(None, inputs=[seed], outputs=[], js=seed_js) | |
file_format.change( | |
lambda f: gr.Gallery(format=f), | |
inputs=[file_format], | |
outputs=[output_images], | |
show_api=False, | |
) | |
# input events are only user input; change events are both user and programmatic | |
aspect_ratio.input( | |
None, | |
inputs=[aspect_ratio, width, height], | |
outputs=[width, height], | |
js=aspect_ratio_js, | |
) | |
# show "Custom" aspect ratio when manually changing width or height | |
gr.on( | |
triggers=[width.input, height.input], | |
fn=None, | |
inputs=[], | |
outputs=[aspect_ratio], | |
js="() => { return null; }", | |
) | |
gr.on( | |
triggers=[generate_btn.click, prompt.submit], | |
fn=generate_fn, | |
api_name="generate", | |
outputs=[output_images], | |
inputs=[ | |
prompt, | |
negative_prompt, | |
style, | |
seed, | |
model, | |
scheduler, | |
width, | |
height, | |
guidance_scale, | |
inference_steps, | |
deepcache_interval, | |
scale, | |
num_images, | |
use_karras, | |
use_refiner, | |
], | |
) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) | |
parser.add_argument("-s", "--server", type=str, metavar="STR", default="0.0.0.0") | |
parser.add_argument("-p", "--port", type=int, metavar="INT", default=7860) | |
args = parser.parse_args() | |
# download to hub cache | |
for repo_id, allow_patterns in Config.HF_MODELS.items(): | |
download_repo_files(repo_id, allow_patterns, token=Config.HF_TOKEN) | |
# https://www.gradio.app/docs/gradio/interface#interface-queue | |
demo.queue(default_concurrency_limit=1).launch( | |
server_name=args.server, | |
server_port=args.port, | |
) | |