MistriDevLab / app.py
acecalisto3's picture
Update app.py
9dad439 verified
raw
history blame
14.1 kB
import os
import subprocess
import random
import time
from typing import Dict, List, Tuple
from datetime import datetime
import logging
import gradio as gr
from huggingface_hub import InferenceClient
from safe_search import safe_search
from i_search import google, i_search as i_s
from transformers import AutoModelForCausalLM, AutoTokenizer
import random
import prompts
# --- Configuration ---
VERBOSE = True
MAX_HISTORY = 5
MAX_TOKENS = 2048
TEMPERATURE = 0.7
TOP_P = 0.8
REPETITION_PENALTY = 1.5
MODEL_NAME = "codellama/CodeLlama-7b-Python-hf" # Use CodeLlama for code-related tasks
API_KEY = os.getenv("HUGGINGFACE_API_KEY")
# --- Logging Setup ---
logging.basicConfig(
filename="app.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
# --- Agents ---
agents = [
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV",
"DATA_SCIENCE",
"UI_UX_DESIGN",
]
# --- Prompts ---
PREFIX = """
{date_time_str}
Purpose: {purpose}
Safe Search: {safe_search}
"""
LOG_PROMPT = """
PROMPT: {content}
"""
LOG_RESPONSE = """
RESPONSE: {resp}
"""
COMPRESS_HISTORY_PROMPT = """
You are a helpful AI assistant. Your task is to compress the following history into a summary that is no longer than 512 tokens.
History: {history}
"""
ACTION_PROMPT = """
You are a helpful AI assistant. You are working on the task: {task}
Your current history is: {history}
What is your next thought?
thought:
What is your next action?
action:
"""
TASK_PROMPT = """
You are a helpful AI assistant. Your current history is: {history}
What is the next task?
task:
"""
UNDERSTAND_TEST_RESULTS_PROMPT = """
You are a helpful AI assistant. The test results are: {test_results}
What do you want to know about the test results?
thought:
"""
# --- Functions ---
def format_prompt(message: str, history: List[Tuple[str, str]], max_history_turns: int = 2) -> str:
"""Formats the prompt for the LLM, including the message and recent history."""
prompt = " "
for user_prompt, bot_response in history[-max_history_turns:]:
prompt += f"[INST] {user_prompt} [/INST] {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_llm(
prompt_template: str,
stop_tokens: List[str],
purpose: str,
**prompt_kwargs: Dict,
) -> str:
"""Runs the LLM with the given prompt template, stop tokens, and purpose."""
seed = random.randint(1, 1111111111111111)
logging.info(f"Seed: {seed}")
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
resp = client.text_generation(
content,
max_new_tokens=MAX_TOKENS,
stop_sequences=stop_tokens,
temperature=TEMPERATURE,
top_p=TOP_P,
repetition_penalty=REPETITION_PENALTY,
)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=resp))
return resp.text # Access the text attribute of the response
def generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
"""Generates a response from the LLM based on the prompt, history, and other parameters."""
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=f"Generating response as {agent_name}",
safe_search=safe_search,
) + sys_prompt + "\n" + prompt
if VERBOSE:
logging.info(LOG_PROMPT.format(content=content))
client = InferenceClient(model=MODEL_NAME, token=API_KEY)
response = client.text_generation(
content,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
if VERBOSE:
logging.info(LOG_RESPONSE.format(resp=response))
return response.text
# --- Mixtral Integration ---
def mixtral_generate(
prompt: str,
history: List[Tuple[str, str]],
agent_name: str = agents[0],
sys_prompt: str = "",
temperature: float = TEMPERATURE,
max_new_tokens: int = MAX_TOKENS,
top_p: float = TOP_P,
repetition_penalty: float = REPETITION_PENALTY,
) -> str:
"""Generates a response using the Mixtral model."""
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") # Use Mixtral model
model = AutoModelForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
content = PREFIX.format(
date_time_str=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
purpose=f"Generating response as {agent_name}",
safe_search=safe_search,
) + sys_prompt + "\n" + prompt
inputs = tokenizer(content, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
def main():
"""Main function to launch the Gradio interface."""
with gr.Blocks() as demo:
gr.Markdown("## FragMixt: The No-Code Development Powerhouse")
gr.Markdown("### Your AI-Powered Development Companion")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
show_label=False,
show_share_button=False,
show_copy_button=True,
likeable=True,
layout="panel",
)
message = gr.Textbox(
label="Enter your message", placeholder="Ask me anything!"
)
submit_button = gr.Button(value="Send")
with gr.Column(scale=1):
purpose = gr.Textbox(
label="Purpose", placeholder="What is the purpose of this interaction?"
)
agent_name = gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
)
sys_prompt = gr.Textbox(
label="System Prompt", max_lines=1, interactive=True
)
temperature = gr.Slider(
label="Temperature",
value=TEMPERATURE,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=MAX_TOKENS,
minimum=0,
maximum=1048 * 10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=TOP_P,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=REPETITION_PENALTY,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
with gr.Tabs():
with gr.TabItem("Project Explorer"):
project_path = gr.Textbox(
label="Project Path", placeholder="/home/user/app/current_project"
)
explore_button = gr.Button(value="Explore")
project_output = gr.Textbox(label="File Tree", lines=20)
with gr.TabItem("Code Editor"):
code_editor = gr.Code(label="Code Editor", language="python")
run_code_button = gr.Button(value="Run Code")
code_output = gr.Textbox(label="Code Output", lines=10)
with gr.TabItem("File Management"):
file_list = gr.Dropdown(
label="Select File", choices=[], interactive=True
)
file_content = gr.Textbox(label="File Content", lines=20)
save_file_button = gr.Button(value="Save File")
create_file_button = gr.Button(value="Create New File")
delete_file_button = gr.Button(value="Delete File")
history = gr.State([])
def chat(
purpose: str,
message: str,
agent_name: str,
sys_prompt: str,
temperature: float,
max_new_tokens: int,
top_p: float,
repetition_penalty: float,
history: List[Tuple[str, str]],
) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]]]:
"""Handles the chat interaction, generating responses and updating history."""
prompt = format_prompt(message, history)
# Use Mixtral for generation
response = mixtral_generate(
prompt,
history,
agent_name,
sys_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
)
history.append((message, response))
return history, history
submit_button.click(
chat,
inputs=[
purpose,
message,
agent_name,
sys_prompt,
temperature,
max_new_tokens,
top_p,
repetition_penalty,
history,
],
outputs=[chatbot, history],
)
def explore_project(project_path: str) -> str:
"""Explores the project directory and displays the file tree."""
try:
tree = subprocess.check_output(["tree", project_path]).decode("utf-8")
return tree
except Exception as e:
return f"Error exploring project: {e}"
explore_button.click(
explore_project, inputs=[project_path], outputs=[project_output]
)
def run_code(code: str) -> str:
"""Executes the Python code in the code editor and returns the output."""
try:
exec_globals = {}
exec(code, exec_globals)
output = exec_globals.get("__builtins__", {}).get("print", print)
return str(output)
except Exception as e:
return f"Error running code: {e}"
run_code_button.click(
run_code, inputs=[code_editor], outputs=[code_output]
)
def load_file_list(project_path: str) -> List[str]:
"""Loads the list of files in the project directory."""
try:
return [
f
for f in os.listdir(project_path)
if os.path.isfile(os.path.join(project_path, f))
]
except Exception as e:
return [f"Error loading file list: {e}"]
def load_file_content(project_path: str, file_name: str) -> str:
"""Loads the content of the selected file."""
try:
with open(os.path.join(project_path, file_name), "r") as file:
return file.read()
except Exception as e:
return f"Error loading file content: {e}"
def save_file(project_path: str, file_name: str, content: str) -> str:
"""Saves the content to the selected file."""
try:
with open(os.path.join(project_path, file_name), "w") as file:
file.write(content)
return f"File {file_name} saved successfully."
except Exception as e:
return f"Error saving file: {e}"
def create_file(project_path: str, file_name: str) -> str:
"""Creates a new file in the project directory."""
try:
os.makedirs(os.path.dirname(os.path.join(project_path, file_name)), exist_ok=True) # Create directory if needed
open(os.path.join(project_path, file_name), "a").close()
return f"File {file_name} created successfully."
except Exception as e:
return f"Error creating file: {e}"
def delete_file(project_path: str, file_name: str) -> str:
"""Deletes the selected file from the project directory."""
try:
os.remove(os.path.join(project_path, file_name))
return f"File {file_name} deleted successfully."
except Exception as e:
return f"Error deleting file: {e}"
project_path.change(
load_file_list, inputs=[project_path], outputs=[file_list]
)
file_list.change(
load_file_content, inputs=[project_path, file_list], outputs=[file_content]
)
save_file_button.click(
save_file, inputs=[project_path, file_list, file_content], outputs=[gr.Textbox()]
)
create_file_button.click(
create_file,
inputs=[project_path, gr.Textbox(label="New File Name")],
outputs=[gr.Textbox()],
)
delete_file_button.click(
delete_file, inputs=[project_path, file_list], outputs=[gr.Textbox()]
)
demo.launch()
if __name__ == "__main__":
main()