|
import g4f |
|
import gradio as gr |
|
from g4f.Provider import ( |
|
Ails, |
|
You, |
|
Bing, |
|
Yqcloud, |
|
Theb, |
|
Aichat, |
|
Bard, |
|
Vercel, |
|
Forefront, |
|
Lockchat, |
|
Liaobots, |
|
H2o, |
|
ChatgptLogin, |
|
DeepAi, |
|
GetGpt, |
|
AItianhu, |
|
EasyChat, |
|
Acytoo, |
|
DfeHub, |
|
AiService, |
|
BingHuan, |
|
Wewordle, |
|
ChatgptAi, |
|
) |
|
import os |
|
import json |
|
import pandas as pd |
|
from langchain.tools.python.tool import PythonREPLTool |
|
from langchain.agents.agent_toolkits import create_python_agent |
|
from models_for_langchain.model import CustomLLM |
|
from langchain.memory import ConversationBufferWindowMemory, ConversationTokenBufferMemory |
|
from langchain import LLMChain, PromptTemplate |
|
from langchain.prompts import ( |
|
ChatPromptTemplate, |
|
PromptTemplate, |
|
SystemMessagePromptTemplate, |
|
AIMessagePromptTemplate, |
|
HumanMessagePromptTemplate, |
|
) |
|
from langchain.agents.agent_types import AgentType |
|
from langchain.tools import WikipediaQueryRun |
|
from langchain.utilities import WikipediaAPIWrapper |
|
from langchain.tools import DuckDuckGoSearchRun |
|
|
|
provider_dict = { |
|
'Ails': Ails, |
|
'You': You, |
|
'Bing': Bing, |
|
'Yqcloud': Yqcloud, |
|
'Theb': Theb, |
|
'Aichat': Aichat, |
|
'Bard': Bard, |
|
'Vercel': Vercel, |
|
'Forefront': Forefront, |
|
'Lockchat': Lockchat, |
|
'Liaobots': Liaobots, |
|
'H2o': H2o, |
|
'ChatgptLogin': ChatgptLogin, |
|
'DeepAi': DeepAi, |
|
'GetGpt': GetGpt, |
|
'AItianhu': AItianhu, |
|
'EasyChat': EasyChat, |
|
'Acytoo': Acytoo, |
|
'DfeHub': DfeHub, |
|
'AiService': AiService, |
|
'BingHuan': BingHuan, |
|
'Wewordle': Wewordle, |
|
'ChatgptAi': ChatgptAi, |
|
} |
|
|
|
available_dict = { |
|
'gpt-3.5-turbo':['Acytoo', 'AiService', 'Aichat', 'GetGpt', 'Wewordle'], |
|
'gpt-4':['ChatgptAi'], |
|
'falcon-7b':['H2o'], |
|
'falcon-13b':['H2o'], |
|
'llama-13b':['H2o'] |
|
} |
|
|
|
def change_prompt_set(prompt_set_name): |
|
return gr.Dropdown.update(choices=list(prompt_set_list[prompt_set_name].keys())) |
|
|
|
def change_model(model_name): |
|
new_choices = list(available_dict[model_name]) |
|
return gr.Dropdown.update(choices=new_choices, value=new_choices[0]) |
|
|
|
def change_prompt(prompt_set_name, prompt_name): |
|
return gr.update(value=prompt_set_list[prompt_set_name][prompt_name]) |
|
|
|
def user(user_message, history): |
|
return gr.update(value="", interactive=False), history + [[user_message, None]] |
|
|
|
def bot(message, history, model_name, provider_name, system_msg, agent): |
|
response = '' |
|
|
|
if len(system_msg)>3000: |
|
system_msg = system_msg[:2000] + system_msg[-1000:] |
|
|
|
global template, memory |
|
llm.model_name = model_name |
|
llm.provider_name = provider_name |
|
if agent == '系统提示': |
|
new_template = template.format(system_instruction=system_msg) |
|
elif agent == '维基百科': |
|
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper()) |
|
target = llm(f'用户的问题:```{message}```。为了回答用户的问题,你需要在维基百科上进行搜索,只有一次搜索的机会,请返回需要搜索的词汇,只需要返回一个英文词汇,不要加任何解释:') |
|
new_template = template.format(system_instruction=wikipedia.run(str(target))) |
|
elif agent == 'duckduckgo': |
|
search = DuckDuckGoSearchRun() |
|
target = llm(f'用户的问题:```{message}```。为了回答用户的问题,你需要在duckduckgo搜索引擎上进行搜索,只有一次搜索的机会,请返回需要搜索的内容,只需要返回纯英文的搜索语句,不要加任何解释:') |
|
new_template = template.format(system_instruction=search.run(str(target))) |
|
elif agent == 'python': |
|
py_agent = create_python_agent( |
|
llm, |
|
tool=PythonREPLTool(), |
|
verbose=True, |
|
|
|
handle_parsing_errors=True, |
|
) |
|
response = py_agent.run(message) |
|
return str(response) |
|
else: |
|
new_template = template.format(system_instruction=system_msg) |
|
prompt = PromptTemplate( |
|
input_variables=["chat_history", "human_input"], template=new_template |
|
) |
|
llm_chain = LLMChain( |
|
llm=llm, |
|
prompt=prompt, |
|
verbose=True, |
|
memory=memory, |
|
) |
|
bot_msg = llm_chain.run(message) |
|
for c in bot_msg: |
|
response += c |
|
return response |
|
|
|
def empty_chat(): |
|
global memory |
|
memory = ConversationBufferWindowMemory(k=6, memory_key="chat_history") |
|
return None |
|
|
|
prompt_set_list = {} |
|
for prompt_file in os.listdir("prompt_set"): |
|
key = prompt_file |
|
if '.csv' in key: |
|
df = pd.read_csv("prompt_set/" + prompt_file) |
|
prompt_dict = dict(zip(df['act'], df['prompt'])) |
|
else: |
|
with open("prompt_set/" + prompt_file, encoding='utf-8') as f: |
|
ds = json.load(f) |
|
prompt_dict = {item["act"]: item["prompt"] for item in ds} |
|
prompt_set_list[key] = prompt_dict |
|
|
|
with gr.Blocks() as demo: |
|
llm = CustomLLM() |
|
|
|
template = """ |
|
Chat with human based on following instructions: |
|
``` |
|
{system_instruction} |
|
``` |
|
The following is a conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. |
|
{{chat_history}} |
|
Human: {{human_input}} |
|
Chatbot:""" |
|
|
|
memory = ConversationBufferWindowMemory(k=6, memory_key="chat_history") |
|
with gr.Row(): |
|
model_name = gr.Dropdown(list(available_dict.keys()), value='gpt-3.5-turbo', label='模型') |
|
provider = gr.Dropdown(available_dict['gpt-3.5-turbo'], value='AiService', label='提供者', min_width=20) |
|
agent = gr.Dropdown(['系统提示', '维基百科', 'duckduckgo'], value='系统提示', label='Agent') |
|
system_msg = gr.Textbox(value="你是一名助手,可以解答问题。", label='系统提示') |
|
gr.ChatInterface(bot, |
|
additional_inputs=[ |
|
model_name, |
|
provider, |
|
system_msg, |
|
agent] |
|
) |
|
with gr.Row(): |
|
default_prompt_set = "1 中文提示词.json" |
|
prompt_set_name = gr.Dropdown(prompt_set_list.keys(), value=default_prompt_set, label='提示词集合') |
|
prompt_name = gr.Dropdown(prompt_set_list[default_prompt_set].keys(), label='提示词', min_width=5, container=True) |
|
|
|
prompt_set_name.select(change_prompt_set, prompt_set_name, prompt_name) |
|
model_name.select(change_model, model_name, provider) |
|
prompt_name.select(change_prompt, [prompt_set_name, prompt_name], system_msg) |
|
|
|
demo.title = "AI Chat" |
|
demo.queue() |
|
demo.launch() |