gpt_demo / app.py
starsaround's picture
Update app.py
747864d
raw
history blame
7 kB
import g4f
import gradio as gr
from g4f.Provider import (
Ails,
You,
Bing,
Yqcloud,
Theb,
Aichat,
Bard,
Vercel,
Forefront,
Lockchat,
Liaobots,
H2o,
ChatgptLogin,
DeepAi,
GetGpt,
AItianhu,
EasyChat,
Acytoo,
DfeHub,
AiService,
BingHuan,
Wewordle,
ChatgptAi,
)
import os
import json
import pandas as pd
from langchain.tools.python.tool import PythonREPLTool
from langchain.agents.agent_toolkits import create_python_agent
from models_for_langchain.model import CustomLLM
from langchain.memory import ConversationBufferWindowMemory, ConversationTokenBufferMemory
from langchain import LLMChain, PromptTemplate
from langchain.prompts import (
ChatPromptTemplate,
PromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.agents.agent_types import AgentType
from langchain.tools import WikipediaQueryRun
from langchain.utilities import WikipediaAPIWrapper
from langchain.tools import DuckDuckGoSearchRun
provider_dict = {
'Ails': Ails,
'You': You,
'Bing': Bing,
'Yqcloud': Yqcloud,
'Theb': Theb,
'Aichat': Aichat,
'Bard': Bard,
'Vercel': Vercel,
'Forefront': Forefront,
'Lockchat': Lockchat,
'Liaobots': Liaobots,
'H2o': H2o,
'ChatgptLogin': ChatgptLogin,
'DeepAi': DeepAi,
'GetGpt': GetGpt,
'AItianhu': AItianhu,
'EasyChat': EasyChat,
'Acytoo': Acytoo,
'DfeHub': DfeHub,
'AiService': AiService,
'BingHuan': BingHuan,
'Wewordle': Wewordle,
'ChatgptAi': ChatgptAi,
}
available_dict = {
'gpt-3.5-turbo':['Acytoo', 'AiService', 'Aichat', 'GetGpt', 'Wewordle'],
'gpt-4':['ChatgptAi'],
'falcon-7b':['H2o'],
'falcon-13b':['H2o'],
'llama-13b':['H2o']
}
def change_prompt_set(prompt_set_name):
return gr.Dropdown.update(choices=list(prompt_set_list[prompt_set_name].keys()))
def change_model(model_name):
new_choices = list(available_dict[model_name])
return gr.Dropdown.update(choices=new_choices, value=new_choices[0])
def change_prompt(prompt_set_name, prompt_name):
return gr.update(value=prompt_set_list[prompt_set_name][prompt_name])
def user(user_message, history):
return gr.update(value="", interactive=False), history + [[user_message, None]]
def bot(message, history, model_name, provider_name, system_msg, agent):
response = ''
if len(system_msg)>3000:
system_msg = system_msg[:2000] + system_msg[-1000:]
global template, memory
llm.model_name = model_name
llm.provider_name = provider_name
if agent == '系统提示':
new_template = template.format(system_instruction=system_msg)
elif agent == '维基百科':
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
target = llm(f'用户的问题:```{message}```。为了回答用户的问题,你需要在维基百科上进行搜索,只有一次搜索的机会,请返回需要搜索的词汇,只需要返回一个英文词汇,不要加任何解释:')
new_template = template.format(system_instruction=wikipedia.run(str(target)))
elif agent == 'duckduckgo':
search = DuckDuckGoSearchRun()
target = llm(f'用户的问题:```{message}```。为了回答用户的问题,你需要在duckduckgo搜索引擎上进行搜索,只有一次搜索的机会,请返回需要搜索的内容,只需要返回纯英文的搜索语句,不要加任何解释:')
new_template = template.format(system_instruction=search.run(str(target)))
elif agent == 'python':
py_agent = create_python_agent(
llm,
tool=PythonREPLTool(), # REPL,一种代码交互方式,类似jupyter,可以执行代码
verbose=True,
# agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION
handle_parsing_errors=True, # 输出无法解析,返回给llm要求改正。
)
response = py_agent.run(message)
return str(response)
else:
new_template = template.format(system_instruction=system_msg)
prompt = PromptTemplate(
input_variables=["chat_history", "human_input"], template=new_template
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
verbose=True,
memory=memory,
)
bot_msg = llm_chain.run(message)
for c in bot_msg:
response += c
return response
def empty_chat():
global memory
memory = ConversationBufferWindowMemory(k=6, memory_key="chat_history")
return None
prompt_set_list = {}
for prompt_file in os.listdir("prompt_set"):
key = prompt_file
if '.csv' in key:
df = pd.read_csv("prompt_set/" + prompt_file)
prompt_dict = dict(zip(df['act'], df['prompt']))
else:
with open("prompt_set/" + prompt_file, encoding='utf-8') as f:
ds = json.load(f)
prompt_dict = {item["act"]: item["prompt"] for item in ds}
prompt_set_list[key] = prompt_dict
with gr.Blocks() as demo:
llm = CustomLLM()
template = """
Chat with human based on following instructions:
```
{system_instruction}
```
The following is a conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.
{{chat_history}}
Human: {{human_input}}
Chatbot:"""
memory = ConversationBufferWindowMemory(k=6, memory_key="chat_history")
with gr.Row():
model_name = gr.Dropdown(list(available_dict.keys()), value='gpt-3.5-turbo', label='模型')
provider = gr.Dropdown(available_dict['gpt-3.5-turbo'], value='AiService', label='提供者', min_width=20)
agent = gr.Dropdown(['系统提示', '维基百科', 'duckduckgo'], value='系统提示', label='Agent')
system_msg = gr.Textbox(value="你是一名助手,可以解答问题。", label='系统提示')
gr.ChatInterface(bot,
additional_inputs=[
model_name,
provider,
system_msg,
agent]
)
with gr.Row():
default_prompt_set = "1 中文提示词.json"
prompt_set_name = gr.Dropdown(prompt_set_list.keys(), value=default_prompt_set, label='提示词集合')
prompt_name = gr.Dropdown(prompt_set_list[default_prompt_set].keys(), label='提示词', min_width=5, container=True)
prompt_set_name.select(change_prompt_set, prompt_set_name, prompt_name)
model_name.select(change_model, model_name, provider)
prompt_name.select(change_prompt, [prompt_set_name, prompt_name], system_msg)
demo.title = "AI Chat"
demo.queue()
demo.launch()