DECO / utils /diff_renderer.py
ac5113's picture
added files
99a05f0
raw
history blame
9.8 kB
# from https://gitlab.tuebingen.mpg.de/mkocabas/projects/-/blob/master/pare/pare/utils/diff_renderer.py
import torch
import numpy as np
import torch.nn as nn
from pytorch3d.renderer import (
PerspectiveCameras,
RasterizationSettings,
DirectionalLights,
BlendParams,
HardFlatShader,
MeshRasterizer,
TexturesVertex,
TexturesAtlas
)
from pytorch3d.structures import Meshes
from .image_utils import get_default_camera
from .smpl_uv import get_tenet_texture
class MeshRendererWithDepth(nn.Module):
"""
A class for rendering a batch of heterogeneous meshes. The class should
be initialized with a rasterizer and shader class which each have a forward
function.
"""
def __init__(self, rasterizer, shader):
super().__init__()
self.rasterizer = rasterizer
self.shader = shader
def forward(self, meshes_world, **kwargs) -> torch.Tensor:
"""
Render a batch of images from a batch of meshes by rasterizing and then
shading.
NOTE: If the blur radius for rasterization is > 0.0, some pixels can
have one or more barycentric coordinates lying outside the range [0, 1].
For a pixel with out of bounds barycentric coordinates with respect to a
face f, clipping is required before interpolating the texture uv
coordinates and z buffer so that the colors and depths are limited to
the range for the corresponding face.
"""
fragments = self.rasterizer(meshes_world, **kwargs)
images = self.shader(fragments, meshes_world, **kwargs)
mask = (fragments.zbuf > -1).float()
zbuf = fragments.zbuf.view(images.shape[0], -1)
# print(images.shape, zbuf.shape)
depth = (zbuf - zbuf.min(-1, keepdims=True).values) / \
(zbuf.max(-1, keepdims=True).values - zbuf.min(-1, keepdims=True).values)
depth = depth.reshape(*images.shape[:3] + (1,))
images = torch.cat([images[:, :, :, :3], mask, depth], dim=-1)
return images
class DifferentiableRenderer(nn.Module):
def __init__(
self,
img_h,
img_w,
focal_length,
device='cuda',
background_color=(0.0, 0.0, 0.0),
texture_mode='smplpix',
vertex_colors=None,
face_textures=None,
smpl_faces=None,
is_train=False,
is_cam_batch=False,
):
super(DifferentiableRenderer, self).__init__()
self.x = 'a'
self.img_h = img_h
self.img_w = img_w
self.device = device
self.focal_length = focal_length
K, R = get_default_camera(focal_length, img_h, img_w, is_cam_batch=is_cam_batch)
K, R = K.to(device), R.to(device)
# T = torch.tensor([[0, 0, 2.5 * self.focal_length / max(self.img_h, self.img_w)]]).to(device)
if is_cam_batch:
T = torch.zeros((K.shape[0], 3)).to(device)
else:
T = torch.tensor([[0.0, 0.0, 0.0]]).to(device)
self.background_color = background_color
self.renderer = None
smpl_faces = smpl_faces
if texture_mode == 'smplpix':
face_colors = get_tenet_texture(mode=texture_mode).to(device).float()
vertex_colors = torch.from_numpy(
np.load(f'data/smpl/{texture_mode}_vertex_colors.npy')[:,:3]
).unsqueeze(0).to(device).float()
if texture_mode == 'partseg':
vertex_colors = vertex_colors[..., :3].unsqueeze(0).to(device)
face_colors = face_textures.to(device)
if texture_mode == 'deco':
vertex_colors = vertex_colors[..., :3].to(device)
face_colors = face_textures.to(device)
self.register_buffer('K', K)
self.register_buffer('R', R)
self.register_buffer('T', T)
self.register_buffer('face_colors', face_colors)
self.register_buffer('vertex_colors', vertex_colors)
self.register_buffer('smpl_faces', smpl_faces)
self.set_requires_grad(is_train)
def set_requires_grad(self, val=False):
self.K.requires_grad_(val)
self.R.requires_grad_(val)
self.T.requires_grad_(val)
self.face_colors.requires_grad_(val)
self.vertex_colors.requires_grad_(val)
# check if smpl_faces is a FloatTensor as requires_grad_ is not defined for LongTensor
if isinstance(self.smpl_faces, torch.FloatTensor):
self.smpl_faces.requires_grad_(val)
def forward(self, vertices, faces=None, R=None, T=None):
raise NotImplementedError
class Pytorch3D(DifferentiableRenderer):
def __init__(
self,
img_h,
img_w,
focal_length,
device='cuda',
background_color=(0.0, 0.0, 0.0),
texture_mode='smplpix',
vertex_colors=None,
face_textures=None,
smpl_faces=None,
model_type='smpl',
is_train=False,
is_cam_batch=False,
):
super(Pytorch3D, self).__init__(
img_h,
img_w,
focal_length,
device=device,
background_color=background_color,
texture_mode=texture_mode,
vertex_colors=vertex_colors,
face_textures=face_textures,
smpl_faces=smpl_faces,
is_train=is_train,
is_cam_batch=is_cam_batch,
)
# this R converts the camera from pyrender NDC to
# OpenGL coordinate frame. It is basicall R(180, X) x R(180, Y)
# I manually defined it here for convenience
self.R = self.R @ torch.tensor(
[[[ -1.0, 0.0, 0.0],
[ 0.0, -1.0, 0.0],
[ 0.0, 0.0, 1.0]]],
dtype=self.R.dtype, device=self.R.device,
)
if is_cam_batch:
focal_length = self.focal_length
else:
focal_length = self.focal_length[None, :]
principal_point = ((self.img_w // 2, self.img_h // 2),)
image_size = ((self.img_h, self.img_w),)
cameras = PerspectiveCameras(
device=self.device,
focal_length=focal_length,
principal_point=principal_point,
R=self.R,
T=self.T,
in_ndc=False,
image_size=image_size,
)
for param in cameras.parameters():
param.requires_grad_(False)
raster_settings = RasterizationSettings(
image_size=(self.img_h, self.img_w),
blur_radius=0.0,
max_faces_per_bin=20000,
faces_per_pixel=1,
)
lights = DirectionalLights(
device=self.device,
ambient_color=((1.0, 1.0, 1.0),),
diffuse_color=((0.0, 0.0, 0.0),),
specular_color=((0.0, 0.0, 0.0),),
direction=((0, 1, 0),),
)
blend_params = BlendParams(background_color=self.background_color)
shader = HardFlatShader(device=self.device,
cameras=cameras,
blend_params=blend_params,
lights=lights)
self.textures = TexturesVertex(verts_features=self.vertex_colors)
self.renderer = MeshRendererWithDepth(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=shader,
)
def forward(self, vertices, faces=None, R=None, T=None, face_atlas=None):
batch_size = vertices.shape[0]
if faces is None:
faces = self.smpl_faces.expand(batch_size, -1, -1)
if R is None:
R = self.R.expand(batch_size, -1, -1)
if T is None:
T = self.T.expand(batch_size, -1)
# convert camera translation to pytorch3d coordinate frame
T = torch.bmm(R, T.unsqueeze(-1)).squeeze(-1)
vertex_textures = TexturesVertex(
verts_features=self.vertex_colors.expand(batch_size, -1, -1)
)
# face_textures needed because vertex_texture cause interpolation at boundaries
if face_atlas:
face_textures = TexturesAtlas(atlas=face_atlas)
else:
face_textures = TexturesAtlas(atlas=self.face_colors)
# we may need to rotate the mesh
meshes = Meshes(verts=vertices, faces=faces, textures=face_textures)
images = self.renderer(meshes, R=R, T=T)
images = images.permute(0, 3, 1, 2)
return images
class NeuralMeshRenderer(DifferentiableRenderer):
def __init__(self, *args, **kwargs):
import neural_renderer as nr
super(NeuralMeshRenderer, self).__init__(*args, **kwargs)
self.neural_renderer = nr.Renderer(
dist_coeffs=None,
orig_size=self.img_size,
image_size=self.img_size,
light_intensity_ambient=1,
light_intensity_directional=0,
anti_aliasing=False,
)
def forward(self, vertices, faces=None, R=None, T=None):
batch_size = vertices.shape[0]
if faces is None:
faces = self.smpl_faces.expand(batch_size, -1, -1)
if R is None:
R = self.R.expand(batch_size, -1, -1)
if T is None:
T = self.T.expand(batch_size, -1)
rgb, depth, mask = self.neural_renderer(
vertices,
faces,
textures=self.face_colors.expand(batch_size, -1, -1, -1, -1, -1),
K=self.K.expand(batch_size, -1, -1),
R=R,
t=T.unsqueeze(1),
)
return torch.cat([rgb, depth.unsqueeze(1), mask.unsqueeze(1)], dim=1)