Spaces:
Sleeping
Sleeping
import torch | |
from torch.utils.data import DataLoader | |
from loguru import logger | |
from train.trainer_step import TrainStepper | |
from train.base_trainer import evaluator | |
from data.base_dataset import BaseDataset | |
from models.deco import DECO | |
from utils.config import parse_args, run_grid_search_experiments | |
def test(hparams): | |
deco_model = DECO(hparams.TRAINING.ENCODER, hparams.TRAINING.CONTEXT, device) | |
pytorch_total_params = sum(p.numel() for p in deco_model.parameters() if p.requires_grad) | |
print('Total number of trainable parameters: ', pytorch_total_params) | |
solver = TrainStepper(deco_model, hparams.TRAINING.CONTEXT, hparams.OPTIMIZER.LR, hparams.TRAINING.LOSS_WEIGHTS, hparams.TRAINING.PAL_LOSS_WEIGHTS, device) | |
logger.info(f'Loading weights from {hparams.TRAINING.BEST_MODEL_PATH}') | |
_, _ = solver.load(hparams.TRAINING.BEST_MODEL_PATH) | |
# Run testing | |
for test_loader in val_loaders: | |
dataset_name = test_loader.dataset.dataset | |
test_dict, total_time = evaluator(test_loader, solver, hparams, 0, dataset_name, return_dict=True) | |
print('Test Contact Precision: ', test_dict['cont_precision']) | |
print('Test Contact Recall: ', test_dict['cont_recall']) | |
print('Test Contact F1 Score: ', test_dict['cont_f1']) | |
print('Test Contact FP Geo. Error: ', test_dict['fp_geo_err']) | |
print('Test Contact FN Geo. Error: ', test_dict['fn_geo_err']) | |
if hparams.TRAINING.CONTEXT: | |
print('Test Contact Semantic Segmentation IoU: ', test_dict['sem_iou']) | |
print('Test Contact Part Segmentation IoU: ', test_dict['part_iou']) | |
print('\nTime taken per image for evaluation: ', total_time) | |
print('-'*50) | |
if __name__ == '__main__': | |
args = parse_args() | |
hparams = run_grid_search_experiments( | |
args, | |
script='tester.py', | |
change_wt_name=False | |
) | |
if torch.cuda.is_available(): | |
device = torch.device('cuda') | |
else: | |
device = torch.device('cpu') | |
val_datasets = [] | |
for ds in hparams.VALIDATION.DATASETS: | |
if ds in ['rich', 'prox']: | |
val_datasets.append(BaseDataset(ds, 'val', model_type='smplx', normalize=hparams.DATASET.NORMALIZE_IMAGES)) | |
elif ds in ['damon']: | |
val_datasets.append(BaseDataset(ds, 'val', model_type='smpl', normalize=hparams.DATASET.NORMALIZE_IMAGES)) | |
else: | |
raise ValueError('Dataset not supported') | |
val_loaders = [DataLoader(val_dataset, batch_size=hparams.DATASET.BATCH_SIZE, shuffle=False, num_workers=hparams.DATASET.NUM_WORKERS) for val_dataset in val_datasets] | |
test(hparams) |