abidlabs's picture
abidlabs HF Staff
Update app.py
16c1617
raw
history blame
826 Bytes
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import torch.nn.functional as F
import time
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224')
model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224')
def predict(image):
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
predicted_class_prob = F.softmax(logits, dim=-1).detach().numpy().max()
predicted_class_idx = logits.argmax(-1).item()
label = model.config.id2label[predicted_class_idx].split(",")[0]
time.sleep(2)
return {label: float(predicted_class_prob)}
import gradio as gr
gr.Interface(predict, gr.Image(type="pil"), "label").queue(concurrency_count=2).launch()