abdibrokhim commited on
Commit
4c79642
1 Parent(s): af32159

init, and major changes has been done

Browse files
Files changed (6) hide show
  1. .gitignore +2 -0
  2. app.py +193 -0
  3. instructions.txt +441 -0
  4. paper.txt +15 -0
  5. requirements.txt +5 -0
  6. systemPrompt.txt +40 -0
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .venv
2
+ .env
app.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from openai import OpenAI
3
+ from dotenv import load_dotenv
4
+ import os
5
+ import requests
6
+ import base64
7
+ from PIL import Image
8
+ from io import BytesIO
9
+
10
+ load_dotenv()
11
+
12
+ # Initialize OpenAI client
13
+ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
14
+
15
+ # System prompt (to be updated)
16
+ SYSTEM_PROMPT = """
17
+ You are tasked with enhancing user prompts to generate clear, detailed, and creative descriptions for a sticker creation AI. The final prompt should be imaginative, visually rich, and aligned with the goal of producing a cute, stylized, and highly personalized sticker based on the user's input.
18
+
19
+ Instructions:
20
+
21
+ Visual Clarity: The enhanced prompt must provide clear visual details that can be directly interpreted by the image generation model. Break down and elaborate on specific elements of the scene, object, or character based on the user input.
22
+
23
+ Example: If the user says "A girl with pink hair," elaborate by adding features like "short wavy pink hair with soft, pastel hues."
24
+ Style & Theme:
25
+
26
+ Emphasize that the final output should reflect a cute, playful, and approachable style.
27
+ Add terms like "adorable," "cartoonish," "sticker-friendly," or "chibi-like" to guide the output to a lighter, cuter aesthetic.
28
+ Include styling prompts like “minimalistic lines,” “soft shading,” and “vibrant yet soothing colors.”
29
+ Personalization:
30
+
31
+ If a reference or context is given, enhance it to make the sticker feel personalized.
32
+ Add context-appropriate descriptors like “wearing a cozy blue hoodie,” “soft pink blush on cheeks,” or “a playful expression.”
33
+ Expression & Pose:
34
+
35
+ Where applicable, refine prompts with suggestions about facial expressions or body language. For example, “Smiling softly with big sparkling eyes” or “A cute wink and a slight tilt of the head.”
36
+ Background & Accessories:
37
+
38
+ Optionally suggest simple, complementary backgrounds or accessories, depending on user input. For instance, "A light pastel background with small, floating hearts" or "Holding a tiny, sparkling star."
39
+ Colors:
40
+
41
+ Emphasize the color scheme based on the user's description, making sure it's consistent with a cute, playful style.
42
+ Use descriptors like “soft pastels,” “bright and cheerful,” or “warm and friendly hues” to set the mood.
43
+ Avoid Overcomplication:
44
+
45
+ Keep the descriptions short enough to be concise and not overly complex, as the output should retain a sticker-friendly quality.
46
+ Avoid unnecessary details that could clutter the design.
47
+ Tone and Language:
48
+
49
+ The tone should be light, imaginative, and fun, matching the playful nature of stickers.
50
+
51
+ Example:
52
+ User Input:
53
+ "A girl with pink hair wearing a hoodie."
54
+
55
+ Enhanced Prompt:
56
+ "An adorable girl with short, wavy pink hair in soft pastel hues, wearing a cozy light blue hoodie. She has a sweet smile with big, sparkling eyes, and a playful expression. The sticker style is cartoonish with minimalistic lines and soft shading. The background is a simple light pastel color with small floating hearts, creating a cute and inviting look."
57
+ """
58
+
59
+ # Function to enhance the user's prompt
60
+ def enhance_prompt(user_prompt) -> str:
61
+ completion = client.chat.completions.create(
62
+ model="gpt-4o",
63
+ messages=[
64
+ {"role": "system", "content": SYSTEM_PROMPT},
65
+ {"role": "user", "content": user_prompt}
66
+ ]
67
+ )
68
+ ep = completion.choices[0].message.content
69
+ print('Enhanced Prompt:', ep)
70
+ return ep
71
+
72
+ # Function to generate images using the selected models
73
+ def generate_images(user_prompt, selected_models):
74
+ enhanced_prompt = enhance_prompt(user_prompt)
75
+ images = []
76
+ headers = {
77
+ "Authorization": f"Bearer {os.getenv('AIMLAPI_API_KEY')}",
78
+ }
79
+ for model in selected_models:
80
+ try:
81
+ payload = {
82
+ "prompt": enhanced_prompt,
83
+ "model": model,
84
+ }
85
+ response = requests.post(
86
+ "https://api.aimlapi.com/images/generations", headers=headers, json=payload
87
+ )
88
+ if response.status_code == 201:
89
+ response_json = response.json()
90
+ print(f"Response for model {model}: {response_json}")
91
+ # Handle OpenAI models differently (Aspect 2)
92
+ if model in ["dall-e-3", "dall-e-2"]:
93
+ if 'data' in response_json and 'url' in response_json['data'][0]:
94
+ image_url = response_json['data'][0]['url']
95
+ image_response = requests.get(image_url)
96
+ image = Image.open(BytesIO(image_response.content))
97
+ images.append(image)
98
+ else:
99
+ print(f"No URL found for model {model}")
100
+ else:
101
+ # Handle other models (Aspect 1)
102
+ if 'images' in response_json and 'url' in response_json['images'][0]:
103
+ image_url = response_json['images'][0]['url']
104
+ image_response = requests.get(image_url)
105
+ image = Image.open(BytesIO(image_response.content))
106
+ images.append(image)
107
+ else:
108
+ print(f"No URL found for model {model}")
109
+ else:
110
+ print(f"Error with model {model}: {response.text}")
111
+ except Exception as e:
112
+ print(f"Exception occurred with model {model}: {e}")
113
+ continue
114
+ return images
115
+
116
+ # List of available image generation models
117
+ model_list = [
118
+ "stable-diffusion-v35-large",
119
+ "flux-pro/v1.1",
120
+ "dall-e-3",
121
+ "stable-diffusion-v3-medium",
122
+ "runwayml/stable-diffusion-v1-5",
123
+ "stabilityai/stable-diffusion-xl-base-1.0",
124
+ "stabilityai/stable-diffusion-2-1",
125
+ "SG161222/Realistic_Vision_V3.0_VAE",
126
+ "prompthero/openjourney",
127
+ "wavymulder/Analog-Diffusion",
128
+ "flux-pro",
129
+ "flux-realism",
130
+ "dall-e-2",
131
+ ]
132
+
133
+ # Gradio Interface
134
+ with gr.Blocks() as demo:
135
+ # Title and links
136
+ with gr.Row():
137
+ gr.Markdown("""
138
+ # Let's Generate Cutesy AI Sticker!
139
+ <p align="center">
140
+ <a title="Page" href="https://ai-sticker-maker.vercel.app/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
141
+ <img src="https://img.shields.io/badge/Project-Website-pink?logo=googlechrome&logoColor=white">
142
+ </a>
143
+ <a title="arXiv" href="https://rebrand.ly/aistickermakerpaper" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
144
+ <img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv&logoColor=white">
145
+ </a>
146
+ <a title="Github" href="https://github.com/abdibrokhim/ai-sticker-maker" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
147
+ <img src="https://img.shields.io/github/stars/EnVision-Research/Lotus?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
148
+ </a>
149
+ <a title="Social" href="https://x.com/abdibrokhim" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
150
+ <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
151
+ </a>
152
+ <a title="Social" href="https://x.com/haodongli00/status/1839524569058582884" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
153
+ <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
154
+ </a>
155
+ <br>
156
+ <strong>Please consider starring <span style="color: orange">&#9733;</span> the <a href="https://github.com/abdibrokhim/ai-sticker-maker" target="_blank" rel="noopener noreferrer">GitHub Repo</a> if you find this useful!</strong>
157
+ """)
158
+ with gr.Row():
159
+ with gr.Column(scale=1):
160
+ # Model selection
161
+ selected_models = gr.CheckboxGroup(
162
+ choices=model_list,
163
+ label="Select Image Generation Models",
164
+ value=["stable-diffusion-v35-large"]
165
+ )
166
+ with gr.Column(scale=2):
167
+ # User prompt input
168
+ # Example propt: a very cutesy panda sitting and easting a pink very creamy ice cream
169
+ user_prompt = gr.Textbox(
170
+ placeholder="A girl with short pink hair wearing an oversize hoodie...",
171
+ label="Enter your prompt here"
172
+ )
173
+ # Generate button
174
+ generate_button = gr.Button("Generate Images")
175
+
176
+ # Outputs
177
+ image_outputs = gr.Gallery(label="Generated Images", columns=[3], rows=[1], elem_id="gallery")
178
+
179
+ # Function to run on button click
180
+ def on_click(user_prompt, selected_models):
181
+ images = generate_images(user_prompt, selected_models)
182
+ # Filter out None values in case of errors
183
+ return [img for img in images if img is not None]
184
+
185
+ # Event binding
186
+ generate_button.click(
187
+ fn=on_click,
188
+ inputs=[user_prompt, selected_models],
189
+ outputs=image_outputs
190
+ )
191
+
192
+ # Launch the Gradio app
193
+ demo.launch()
instructions.txt ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Given the following code snippets, and the list of image generation models with example API requests.
3
+
4
+ [TASK]
5
+ <|gradio_app_instructions|>
6
+ Your task is to complete the code snippets by adding the necessary code to make the API requests.
7
+ The steps are really simple; user inputs any prompt; for example; "A girl with short pink hair wearing a oversize hoodie.".
8
+ Then, the prompt will be passed to the enhance_prompt function to enhance the prompt.
9
+ The enhanced prompt will be passed to the image generation model to generate the image.
10
+ However, here user will select which image generation model to use.
11
+ The image will be generated and displayed to the user.
12
+
13
+ [UI]
14
+ <|gradio_app_ui|>
15
+ List the image generation models on the left side of the UI.
16
+ Make image generation model selection as checkbox.
17
+ Display as much Image Output as user selected image generation models.
18
+ For example; we have 13 image generation models, and user selected 3 models using checkbox.
19
+ After user enters the prompt. The image will be generated using 3 models and displayed to the user.
20
+
21
+ [DOCS]
22
+ Feel free to use Gradio documentation to complete the task.
23
+
24
+ [CODE]
25
+ <|start_of_code_snippet|>
26
+ import gradio as gr
27
+ from openai import OpenAI
28
+ from dotenv import load_dotenv
29
+ import os
30
+
31
+ load_dotenv()
32
+
33
+ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
34
+
35
+ # i will update [SYSTEM_PROMPT] myself, ignore for now.
36
+ SYSTEM_PROMPT = """
37
+ <i will update myself, ignore for now.>
38
+ """
39
+
40
+ # general function to enhance prompt
41
+ # user prompt will be passed as an argument
42
+ # this is very first step after user input
43
+ # then enhanced prompt will be passed to the image generation model
44
+ def enhance_prompt(user_prompt) -> str:
45
+ completion = client.chat.completions.create(
46
+ model="gpt-4o",
47
+ messages=[
48
+ {"role": "system", "content": SYSTEM_PROMPT},
49
+ {"role": "user", "content": user_prompt}
50
+ ]
51
+ )
52
+
53
+ ep = completion.choices[0].message.content
54
+ print('Enhanced Prompt: ' ,ep)
55
+
56
+ return ep
57
+
58
+ # title should be centered
59
+ # gradio app title
60
+ title = "Let's Generate Cutesy AI Sticker!"
61
+
62
+ # align project_website and paper_url center and in one row
63
+ project_website = "https://ai-sticker-maker.vercel.app/"
64
+ paper_url = "https://rebrand.ly/aistickermakerpaper"
65
+
66
+ # call to action text should be also centered
67
+ call_to_action_text = "Please consider starring ⭐️ the [GitHub Repo](https://github.com/abdibrokhim/ai-sticker-maker) if you find this useful!"
68
+
69
+ # to build from scratch, you can follow the tutorial on medium and dev.to
70
+ tutorial_on_medium_link = "https://medium.com/@abdibrokhim/building-an-ai-sticker-maker-platform-with-ai-ml-api-next-js-8b0767a7e159"
71
+ tutorial_on_dev_link = "https://dev.to/abdibrokhim/building-an-ai-sticker-maker-platform-with-aiml-api-nextjs-react-and-tailwind-css-using-openai-gpt-4o-and-dalle-3-models-46ip"
72
+
73
+ # general input placeholder
74
+ placeholder = "A girl with short pink hair wearing a oversize hoodie..."
75
+
76
+ <|list_of_image_generation_models|>
77
+ # list of image generation models with example API requests
78
+
79
+ # 1. stable-diffusion-v35-large
80
+ # import requests
81
+ # import base64
82
+ # def main():
83
+ # headers = {
84
+ # "Authorization": "Bearer <YOUR_API_KEY>",
85
+ # }
86
+
87
+ # payload = {
88
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
89
+ # "model": "stable-diffusion-v35-large",
90
+ # }
91
+
92
+ # response = requests.post(
93
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
94
+ # )
95
+
96
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
97
+ # image_data = base64.b64decode(image_base64)
98
+
99
+ # with open("./image.png", "wb") as file:
100
+ # file.write(image_data)
101
+
102
+
103
+ # main()
104
+
105
+ # 2. flux-pro/v1.1
106
+ # import requests
107
+ # import base64
108
+
109
+
110
+ # def main():
111
+ # headers = {
112
+ # "Authorization": "Bearer <YOUR_API_KEY>",
113
+ # }
114
+
115
+ # payload = {
116
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
117
+ # "model": "flux-pro/v1.1",
118
+ # }
119
+
120
+ # response = requests.post(
121
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
122
+ # )
123
+
124
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
125
+ # image_data = base64.b64decode(image_base64)
126
+
127
+ # with open("./image.png", "wb") as file:
128
+ # file.write(image_data)
129
+
130
+
131
+ # main()
132
+
133
+ # 3. dall-e-3
134
+ # import requests
135
+ # import base64
136
+
137
+
138
+ # def main():
139
+ # headers = {
140
+ # "Authorization": "Bearer <YOUR_API_KEY>",
141
+ # }
142
+
143
+ # payload = {
144
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
145
+ # "model": "dall-e-3",
146
+ # }
147
+
148
+ # response = requests.post(
149
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
150
+ # )
151
+
152
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
153
+ # image_data = base64.b64decode(image_base64)
154
+
155
+ # with open("./image.png", "wb") as file:
156
+ # file.write(image_data)
157
+
158
+
159
+ # main()
160
+
161
+ # 4. stable-diffusion-v3-medium
162
+ # import requests
163
+ # import base64
164
+
165
+
166
+ # def main():
167
+ # headers = {
168
+ # "Authorization": "Bearer <YOUR_API_KEY>",
169
+ # }
170
+
171
+ # payload = {
172
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
173
+ # "model": "stable-diffusion-v3-medium",
174
+ # }
175
+
176
+ # response = requests.post(
177
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
178
+ # )
179
+
180
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
181
+ # image_data = base64.b64decode(image_base64)
182
+
183
+ # with open("./image.png", "wb") as file:
184
+ # file.write(image_data)
185
+
186
+
187
+ # main()
188
+
189
+ # 5. runwayml/stable-diffusion-v1-5
190
+ # import requests
191
+ # import base64
192
+
193
+
194
+ # def main():
195
+ # headers = {
196
+ # "Authorization": "Bearer <YOUR_API_KEY>",
197
+ # }
198
+
199
+ # payload = {
200
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
201
+ # "model": "runwayml/stable-diffusion-v1-5",
202
+ # }
203
+
204
+ # response = requests.post(
205
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
206
+ # )
207
+
208
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
209
+ # image_data = base64.b64decode(image_base64)
210
+
211
+ # with open("./image.png", "wb") as file:
212
+ # file.write(image_data)
213
+
214
+
215
+ # main()
216
+
217
+ # 6. stabilityai/stable-diffusion-xl-base-1.0
218
+ # import requests
219
+ # import base64
220
+
221
+
222
+ # def main():
223
+ # headers = {
224
+ # "Authorization": "Bearer <YOUR_API_KEY>",
225
+ # }
226
+
227
+ # payload = {
228
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
229
+ # "model": "stabilityai/stable-diffusion-xl-base-1.0",
230
+ # }
231
+
232
+ # response = requests.post(
233
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
234
+ # )
235
+
236
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
237
+ # image_data = base64.b64decode(image_base64)
238
+
239
+ # with open("./image.png", "wb") as file:
240
+ # file.write(image_data)
241
+
242
+
243
+ # main()
244
+
245
+ # 7. stabilityai/stable-diffusion-2-1
246
+ # import requests
247
+ # import base64
248
+
249
+
250
+ # def main():
251
+ # headers = {
252
+ # "Authorization": "Bearer <YOUR_API_KEY>",
253
+ # }
254
+
255
+ # payload = {
256
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
257
+ # "model": "stabilityai/stable-diffusion-2-1",
258
+ # }
259
+
260
+ # response = requests.post(
261
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
262
+ # )
263
+
264
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
265
+ # image_data = base64.b64decode(image_base64)
266
+
267
+ # with open("./image.png", "wb") as file:
268
+ # file.write(image_data)
269
+
270
+
271
+ # main()
272
+
273
+ # 8. SG161222/Realistic_Vision_V3.0_VAE
274
+ # import requests
275
+ # import base64
276
+
277
+
278
+ # def main():
279
+ # headers = {
280
+ # "Authorization": "Bearer <YOUR_API_KEY>",
281
+ # }
282
+
283
+ # payload = {
284
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
285
+ # "model": "SG161222/Realistic_Vision_V3.0_VAE",
286
+ # }
287
+
288
+ # response = requests.post(
289
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
290
+ # )
291
+
292
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
293
+ # image_data = base64.b64decode(image_base64)
294
+
295
+ # with open("./image.png", "wb") as file:
296
+ # file.write(image_data)
297
+
298
+
299
+ # main()
300
+
301
+ # 9. prompthero/openjourney
302
+ # import requests
303
+ # import base64
304
+
305
+
306
+ # def main():
307
+ # headers = {
308
+ # "Authorization": "Bearer <YOUR_API_KEY>",
309
+ # }
310
+
311
+ # payload = {
312
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
313
+ # "model": "prompthero/openjourney",
314
+ # }
315
+
316
+ # response = requests.post(
317
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
318
+ # )
319
+
320
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
321
+ # image_data = base64.b64decode(image_base64)
322
+
323
+ # with open("./image.png", "wb") as file:
324
+ # file.write(image_data)
325
+
326
+
327
+ # main()
328
+
329
+ # 10. wavymulder/Analog-Diffusion
330
+ # import requests
331
+ # import base64
332
+
333
+
334
+ # def main():
335
+ # headers = {
336
+ # "Authorization": "Bearer <YOUR_API_KEY>",
337
+ # }
338
+
339
+ # payload = {
340
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
341
+ # "model": "wavymulder/Analog-Diffusion",
342
+ # }
343
+
344
+ # response = requests.post(
345
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
346
+ # )
347
+
348
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
349
+ # image_data = base64.b64decode(image_base64)
350
+
351
+ # with open("./image.png", "wb") as file:
352
+ # file.write(image_data)
353
+
354
+
355
+ # main()
356
+
357
+ # 11. flux-pro
358
+ # import requests
359
+ # import base64
360
+
361
+
362
+ # def main():
363
+ # headers = {
364
+ # "Authorization": "Bearer <YOUR_API_KEY>",
365
+ # }
366
+
367
+ # payload = {
368
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
369
+ # "model": "flux-pro",
370
+ # }
371
+
372
+ # response = requests.post(
373
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
374
+ # )
375
+
376
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
377
+ # image_data = base64.b64decode(image_base64)
378
+
379
+ # with open("./image.png", "wb") as file:
380
+ # file.write(image_data)
381
+
382
+
383
+ # main()
384
+
385
+ # 12. flux-realism
386
+ # import requests
387
+ # import base64
388
+
389
+
390
+ # def main():
391
+ # headers = {
392
+ # "Authorization": "Bearer <YOUR_API_KEY>",
393
+ # }
394
+
395
+ # payload = {
396
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
397
+ # "model": "flux-realism",
398
+ # }
399
+
400
+ # response = requests.post(
401
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
402
+ # )
403
+
404
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
405
+ # image_data = base64.b64decode(image_base64)
406
+
407
+ # with open("./image.png", "wb") as file:
408
+ # file.write(image_data)
409
+
410
+
411
+ # main()
412
+
413
+ # 13. dall-e-2
414
+ # import requests
415
+ # import base64
416
+
417
+
418
+ # def main():
419
+ # headers = {
420
+ # "Authorization": "Bearer <YOUR_API_KEY>",
421
+ # }
422
+
423
+ # payload = {
424
+ # "prompt": "Hyperrealistic art featuring a cat in costume.",
425
+ # "model": "dall-e-2",
426
+ # }
427
+
428
+ # response = requests.post(
429
+ # "https://api.aimlapi.com/images/generations", headers=headers, json=payload
430
+ # )
431
+
432
+ # image_base64 = response.json()["output"]["choices"][0]["image_base64"]
433
+ # image_data = base64.b64decode(image_base64)
434
+
435
+ # with open("./image.png", "wb") as file:
436
+ # file.write(image_data)
437
+
438
+
439
+ # main()
440
+
441
+ <|end_of_code_snippet|>
paper.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [title]
2
+ Text-to-Sticker: Leveraging Image Generation Models to generate AI stickers using simple Prompt Engineering techniques
3
+
4
+ [abstract]
5
+ We present a novel approach to generate AI stickers using image generation models. We leverage the power of image generation models to generate stickers from text prompts. We propose a simple yet effective prompt engineering technique to generate stickers from text prompts. We demonstrate the effectiveness of our approach by generating AI stickers from text prompts. Our approach is simple, efficient, and can be easily extended to generate stickers for a wide range of applications.
6
+
7
+ [keywords]
8
+ Text-to-Sticker, Image Generation Models, AI stickers, Prompt Engineering
9
+
10
+ [output]
11
+ Revised Title: "Text-to-Sticker: A Prompt Engineering Approach for Generating AI Stickers via Image Generation Models"
12
+
13
+ Enhanced Abstract: Abstract. In this paper, we present Text-to-Sticker, a streamlined approach to generating AI stickers through prompt engineering applied to advanced image generation models. Our method employs carefully crafted prompts to guide these models in transforming simple text descriptions into high-quality, visually appealing stickers. This approach highlights the versatility and effectiveness of prompt engineering in sticker creation, emphasizing minimal computational overhead and ease of integration across various applications. We validate the efficacy of our method through extensive testing, showcasing its ability to produce diverse and contextually aligned sticker outputs with minimal adjustments. This technique offers a practical solution for scalable AI sticker generation and can be adapted to a broad array of stylistic and thematic needs.
14
+
15
+ Keywords: Text-to-Sticker, Image Generation Models, AI Stickers, Prompt Engineering
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ openai
2
+ gradio
3
+ python-dotenv
4
+ Pillow
5
+ requests
systemPrompt.txt ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ You are tasked with enhancing user prompts to generate clear, detailed, and creative descriptions for a sticker creation AI. The final prompt should be imaginative, visually rich, and aligned with the goal of producing a cute, stylized, and highly personalized sticker based on the user's input.
2
+
3
+ Instructions:
4
+
5
+ Visual Clarity: The enhanced prompt must provide clear visual details that can be directly interpreted by the image generation model. Break down and elaborate on specific elements of the scene, object, or character based on the user input.
6
+
7
+ Example: If the user says "A girl with pink hair," elaborate by adding features like "short wavy pink hair with soft, pastel hues."
8
+ Style & Theme:
9
+
10
+ Emphasize that the final output should reflect a cute, playful, and approachable style.
11
+ Add terms like "adorable," "cartoonish," "sticker-friendly," or "chibi-like" to guide the output to a lighter, cuter aesthetic.
12
+ Include styling prompts like “minimalistic lines,” “soft shading,” and “vibrant yet soothing colors.”
13
+ Personalization:
14
+
15
+ If a reference or context is given, enhance it to make the sticker feel personalized.
16
+ Add context-appropriate descriptors like “wearing a cozy blue hoodie,” “soft pink blush on cheeks,” or “a playful expression.”
17
+ Expression & Pose:
18
+
19
+ Where applicable, refine prompts with suggestions about facial expressions or body language. For example, “Smiling softly with big sparkling eyes” or “A cute wink and a slight tilt of the head.”
20
+ Background & Accessories:
21
+
22
+ Optionally suggest simple, complementary backgrounds or accessories, depending on user input. For instance, "A light pastel background with small, floating hearts" or "Holding a tiny, sparkling star."
23
+ Colors:
24
+
25
+ Emphasize the color scheme based on the user's description, making sure it's consistent with a cute, playful style.
26
+ Use descriptors like “soft pastels,” “bright and cheerful,” or “warm and friendly hues” to set the mood.
27
+ Avoid Overcomplication:
28
+
29
+ Keep the descriptions short enough to be concise and not overly complex, as the output should retain a sticker-friendly quality.
30
+ Avoid unnecessary details that could clutter the design.
31
+ Tone and Language:
32
+
33
+ The tone should be light, imaginative, and fun, matching the playful nature of stickers.
34
+
35
+ Example:
36
+ User Input:
37
+ "A girl with pink hair wearing a hoodie."
38
+
39
+ Enhanced Prompt:
40
+ "An adorable girl with short, wavy pink hair in soft pastel hues, wearing a cozy light blue hoodie. She has a sweet smile with big, sparkling eyes, and a playful expression. The sticker style is cartoonish with minimalistic lines and soft shading. The background is a simple light pastel color with small floating hearts, creating a cute and inviting look."