Spaces:
Running
Running
from configs import CACHED_VS_NUM, CACHED_MEMO_VS_NUM | |
from server.knowledge_base.kb_cache.base import * | |
from server.knowledge_base.kb_service.base import EmbeddingsFunAdapter | |
from server.utils import load_local_embeddings | |
from server.knowledge_base.utils import get_vs_path | |
from langchain.vectorstores.faiss import FAISS | |
from langchain.docstore.in_memory import InMemoryDocstore | |
from langchain.schema import Document | |
import os | |
from langchain.schema import Document | |
# patch FAISS to include doc id in Document.metadata | |
def _new_ds_search(self, search: str) -> Union[str, Document]: | |
if search not in self._dict: | |
return f"ID {search} not found." | |
else: | |
doc = self._dict[search] | |
if isinstance(doc, Document): | |
doc.metadata["id"] = search | |
return doc | |
InMemoryDocstore.search = _new_ds_search | |
class ThreadSafeFaiss(ThreadSafeObject): | |
def __repr__(self) -> str: | |
cls = type(self).__name__ | |
return f"<{cls}: key: {self.key}, obj: {self._obj}, docs_count: {self.docs_count()}>" | |
def docs_count(self) -> int: | |
return len(self._obj.docstore._dict) | |
def save(self, path: str, create_path: bool = True): | |
with self.acquire(): | |
if not os.path.isdir(path) and create_path: | |
os.makedirs(path) | |
ret = self._obj.save_local(path) | |
logger.info(f"已将向量库 {self.key} 保存到磁盘") | |
return ret | |
def clear(self): | |
ret = [] | |
with self.acquire(): | |
ids = list(self._obj.docstore._dict.keys()) | |
if ids: | |
ret = self._obj.delete(ids) | |
assert len(self._obj.docstore._dict) == 0 | |
logger.info(f"已将向量库 {self.key} 清空") | |
return ret | |
class _FaissPool(CachePool): | |
def new_vector_store( | |
self, | |
embed_model: str = EMBEDDING_MODEL, | |
embed_device: str = embedding_device(), | |
) -> FAISS: | |
embeddings = EmbeddingsFunAdapter(embed_model) | |
doc = Document(page_content="init", metadata={}) | |
vector_store = FAISS.from_documents([doc], embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT") | |
ids = list(vector_store.docstore._dict.keys()) | |
vector_store.delete(ids) | |
return vector_store | |
def save_vector_store(self, kb_name: str, path: str=None): | |
if cache := self.get(kb_name): | |
return cache.save(path) | |
def unload_vector_store(self, kb_name: str): | |
if cache := self.get(kb_name): | |
self.pop(kb_name) | |
logger.info(f"成功释放向量库:{kb_name}") | |
class KBFaissPool(_FaissPool): | |
def load_vector_store( | |
self, | |
kb_name: str, | |
vector_name: str = None, | |
create: bool = True, | |
embed_model: str = EMBEDDING_MODEL, | |
embed_device: str = embedding_device(), | |
) -> ThreadSafeFaiss: | |
self.atomic.acquire() | |
vector_name = vector_name or embed_model | |
cache = self.get((kb_name, vector_name)) # 用元组比拼接字符串好一些 | |
if cache is None: | |
item = ThreadSafeFaiss((kb_name, vector_name), pool=self) | |
self.set((kb_name, vector_name), item) | |
with item.acquire(msg="初始化"): | |
self.atomic.release() | |
logger.info(f"loading vector store in '{kb_name}/vector_store/{vector_name}' from disk.") | |
vs_path = get_vs_path(kb_name, vector_name) | |
if os.path.isfile(os.path.join(vs_path, "index.faiss")): | |
embeddings = self.load_kb_embeddings(kb_name=kb_name, embed_device=embed_device, default_embed_model=embed_model) | |
vector_store = FAISS.load_local(vs_path, embeddings, normalize_L2=True,distance_strategy="METRIC_INNER_PRODUCT") | |
elif create: | |
# create an empty vector store | |
if not os.path.exists(vs_path): | |
os.makedirs(vs_path) | |
vector_store = self.new_vector_store(embed_model=embed_model, embed_device=embed_device) | |
vector_store.save_local(vs_path) | |
else: | |
raise RuntimeError(f"knowledge base {kb_name} not exist.") | |
item.obj = vector_store | |
item.finish_loading() | |
else: | |
self.atomic.release() | |
return self.get((kb_name, vector_name)) | |
class MemoFaissPool(_FaissPool): | |
def load_vector_store( | |
self, | |
kb_name: str, | |
embed_model: str = EMBEDDING_MODEL, | |
embed_device: str = embedding_device(), | |
) -> ThreadSafeFaiss: | |
self.atomic.acquire() | |
cache = self.get(kb_name) | |
if cache is None: | |
item = ThreadSafeFaiss(kb_name, pool=self) | |
self.set(kb_name, item) | |
with item.acquire(msg="初始化"): | |
self.atomic.release() | |
logger.info(f"loading vector store in '{kb_name}' to memory.") | |
# create an empty vector store | |
vector_store = self.new_vector_store(embed_model=embed_model, embed_device=embed_device) | |
item.obj = vector_store | |
item.finish_loading() | |
else: | |
self.atomic.release() | |
return self.get(kb_name) | |
kb_faiss_pool = KBFaissPool(cache_num=CACHED_VS_NUM) | |
memo_faiss_pool = MemoFaissPool(cache_num=CACHED_MEMO_VS_NUM) | |
if __name__ == "__main__": | |
import time, random | |
from pprint import pprint | |
kb_names = ["vs1", "vs2", "vs3"] | |
# for name in kb_names: | |
# memo_faiss_pool.load_vector_store(name) | |
def worker(vs_name: str, name: str): | |
vs_name = "samples" | |
time.sleep(random.randint(1, 5)) | |
embeddings = load_local_embeddings() | |
r = random.randint(1, 3) | |
with kb_faiss_pool.load_vector_store(vs_name).acquire(name) as vs: | |
if r == 1: # add docs | |
ids = vs.add_texts([f"text added by {name}"], embeddings=embeddings) | |
pprint(ids) | |
elif r == 2: # search docs | |
docs = vs.similarity_search_with_score(f"{name}", k=3, score_threshold=1.0) | |
pprint(docs) | |
if r == 3: # delete docs | |
logger.warning(f"清除 {vs_name} by {name}") | |
kb_faiss_pool.get(vs_name).clear() | |
threads = [] | |
for n in range(1, 30): | |
t = threading.Thread(target=worker, | |
kwargs={"vs_name": random.choice(kb_names), "name": f"worker {n}"}, | |
daemon=True) | |
t.start() | |
threads.append(t) | |
for t in threads: | |
t.join() | |