Spaces:
Running
Running
from fastapi import Body, File, Form, UploadFile | |
from sse_starlette.sse import EventSourceResponse | |
from configs import (LLM_MODELS, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, TEMPERATURE, | |
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE) | |
from server.utils import (wrap_done, get_ChatOpenAI, | |
BaseResponse, get_prompt_template, get_temp_dir, run_in_thread_pool) | |
from server.knowledge_base.kb_cache.faiss_cache import memo_faiss_pool | |
from langchain.chains import LLMChain | |
from langchain.callbacks import AsyncIteratorCallbackHandler | |
from typing import AsyncIterable, List, Optional | |
import asyncio | |
from langchain.prompts.chat import ChatPromptTemplate | |
from server.chat.utils import History | |
from server.knowledge_base.kb_service.base import EmbeddingsFunAdapter | |
from server.knowledge_base.utils import KnowledgeFile | |
import json | |
import os | |
from pathlib import Path | |
def _parse_files_in_thread( | |
files: List[UploadFile], | |
dir: str, | |
zh_title_enhance: bool, | |
chunk_size: int, | |
chunk_overlap: int, | |
): | |
""" | |
通过多线程将上传的文件保存到对应目录内。 | |
生成器返回保存结果:[success or error, filename, msg, docs] | |
""" | |
def parse_file(file: UploadFile) -> dict: | |
''' | |
保存单个文件。 | |
''' | |
try: | |
filename = file.filename | |
file_path = os.path.join(dir, filename) | |
file_content = file.file.read() # 读取上传文件的内容 | |
if not os.path.isdir(os.path.dirname(file_path)): | |
os.makedirs(os.path.dirname(file_path)) | |
with open(file_path, "wb") as f: | |
f.write(file_content) | |
kb_file = KnowledgeFile(filename=filename, knowledge_base_name="temp") | |
kb_file.filepath = file_path | |
docs = kb_file.file2text(zh_title_enhance=zh_title_enhance, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap) | |
return True, filename, f"成功上传文件 {filename}", docs | |
except Exception as e: | |
msg = f"{filename} 文件上传失败,报错信息为: {e}" | |
return False, filename, msg, [] | |
params = [{"file": file} for file in files] | |
for result in run_in_thread_pool(parse_file, params=params): | |
yield result | |
def upload_temp_docs( | |
files: List[UploadFile] = File(..., description="上传文件,支持多文件"), | |
prev_id: str = Form(None, description="前知识库ID"), | |
chunk_size: int = Form(CHUNK_SIZE, description="知识库中单段文本最大长度"), | |
chunk_overlap: int = Form(OVERLAP_SIZE, description="知识库中相邻文本重合长度"), | |
zh_title_enhance: bool = Form(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"), | |
) -> BaseResponse: | |
''' | |
将文件保存到临时目录,并进行向量化。 | |
返回临时目录名称作为ID,同时也是临时向量库的ID。 | |
''' | |
if prev_id is not None: | |
memo_faiss_pool.pop(prev_id) | |
failed_files = [] | |
documents = [] | |
path, id = get_temp_dir(prev_id) | |
for success, file, msg, docs in _parse_files_in_thread(files=files, | |
dir=path, | |
zh_title_enhance=zh_title_enhance, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap): | |
if success: | |
documents += docs | |
else: | |
failed_files.append({file: msg}) | |
with memo_faiss_pool.load_vector_store(id).acquire() as vs: | |
vs.add_documents(documents) | |
return BaseResponse(data={"id": id, "failed_files": failed_files}) | |
async def file_chat(query: str = Body(..., description="用户输入", examples=["你好"]), | |
knowledge_id: str = Body(..., description="临时知识库ID"), | |
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), | |
score_threshold: float = Body(SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=2), | |
history: List[History] = Body([], | |
description="历史对话", | |
examples=[[ | |
{"role": "user", | |
"content": "我们来玩成语接龙,我先来,生龙活虎"}, | |
{"role": "assistant", | |
"content": "虎头虎脑"}]] | |
), | |
stream: bool = Body(False, description="流式输出"), | |
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), | |
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), | |
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"), | |
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"), | |
): | |
if knowledge_id not in memo_faiss_pool.keys(): | |
return BaseResponse(code=404, msg=f"未找到临时知识库 {knowledge_id},请先上传文件") | |
history = [History.from_data(h) for h in history] | |
async def knowledge_base_chat_iterator() -> AsyncIterable[str]: | |
nonlocal max_tokens | |
callback = AsyncIteratorCallbackHandler() | |
if isinstance(max_tokens, int) and max_tokens <= 0: | |
max_tokens = None | |
model = get_ChatOpenAI( | |
model_name=model_name, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
callbacks=[callback], | |
) | |
embed_func = EmbeddingsFunAdapter() | |
embeddings = await embed_func.aembed_query(query) | |
with memo_faiss_pool.acquire(knowledge_id) as vs: | |
docs = vs.similarity_search_with_score_by_vector(embeddings, k=top_k, score_threshold=score_threshold) | |
docs = [x[0] for x in docs] | |
context = "\n".join([doc.page_content for doc in docs]) | |
if len(docs) == 0: ## 如果没有找到相关文档,使用Empty模板 | |
prompt_template = get_prompt_template("knowledge_base_chat", "empty") | |
else: | |
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name) | |
input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
chat_prompt = ChatPromptTemplate.from_messages( | |
[i.to_msg_template() for i in history] + [input_msg]) | |
chain = LLMChain(prompt=chat_prompt, llm=model) | |
# Begin a task that runs in the background. | |
task = asyncio.create_task(wrap_done( | |
chain.acall({"context": context, "question": query}), | |
callback.done), | |
) | |
source_documents = [] | |
for inum, doc in enumerate(docs): | |
filename = doc.metadata.get("source") | |
text = f"""出处 [{inum + 1}] [{filename}] \n\n{doc.page_content}\n\n""" | |
source_documents.append(text) | |
if len(source_documents) == 0: # 没有找到相关文档 | |
source_documents.append(f"""<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>""") | |
if stream: | |
async for token in callback.aiter(): | |
# Use server-sent-events to stream the response | |
yield json.dumps({"answer": token}, ensure_ascii=False) | |
yield json.dumps({"docs": source_documents}, ensure_ascii=False) | |
else: | |
answer = "" | |
async for token in callback.aiter(): | |
answer += token | |
yield json.dumps({"answer": answer, | |
"docs": source_documents}, | |
ensure_ascii=False) | |
await task | |
return EventSourceResponse(knowledge_base_chat_iterator()) | |