Spaces:
Running
Running
from fastapi import Body | |
from sse_starlette.sse import EventSourceResponse | |
from configs import LLM_MODELS, TEMPERATURE | |
from server.utils import wrap_done, get_ChatOpenAI | |
from langchain.chains import LLMChain | |
from langchain.callbacks import AsyncIteratorCallbackHandler | |
from typing import AsyncIterable | |
import asyncio | |
import json | |
from langchain.prompts.chat import ChatPromptTemplate | |
from typing import List, Optional, Union | |
from server.chat.utils import History | |
from langchain.prompts import PromptTemplate | |
from server.utils import get_prompt_template | |
from server.memory.conversation_db_buffer_memory import ConversationBufferDBMemory | |
from server.db.repository import add_message_to_db | |
from server.callback_handler.conversation_callback_handler import ConversationCallbackHandler | |
async def chat(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]), | |
conversation_id: str = Body("", description="对话框ID"), | |
history_len: int = Body(-1, description="从数据库中取历史消息的数量"), | |
history: Union[int, List[History]] = Body([], | |
description="历史对话,设为一个整数可以从数据库中读取历史消息", | |
examples=[[ | |
{"role": "user", | |
"content": "我们来玩成语接龙,我先来,生龙活虎"}, | |
{"role": "assistant", "content": "虎头虎脑"}]] | |
), | |
stream: bool = Body(False, description="流式输出"), | |
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), | |
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=2.0), | |
max_tokens: Optional[int] = Body(None, description="限制LLM生成Token数量,默认None代表模型最大值"), | |
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0), | |
prompt_name: str = Body("default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)"), | |
): | |
async def chat_iterator() -> AsyncIterable[str]: | |
nonlocal history, max_tokens | |
callback = AsyncIteratorCallbackHandler() | |
callbacks = [callback] | |
memory = None | |
# 负责保存llm response到message db | |
message_id = add_message_to_db(chat_type="llm_chat", query=query, conversation_id=conversation_id) | |
conversation_callback = ConversationCallbackHandler(conversation_id=conversation_id, message_id=message_id, | |
chat_type="llm_chat", | |
query=query) | |
callbacks.append(conversation_callback) | |
if isinstance(max_tokens, int) and max_tokens <= 0: | |
max_tokens = None | |
model = get_ChatOpenAI( | |
model_name=model_name, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
callbacks=callbacks, | |
) | |
if history: # 优先使用前端传入的历史消息 | |
history = [History.from_data(h) for h in history] | |
prompt_template = get_prompt_template("llm_chat", prompt_name) | |
input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
chat_prompt = ChatPromptTemplate.from_messages( | |
[i.to_msg_template() for i in history] + [input_msg]) | |
elif conversation_id and history_len > 0: # 前端要求从数据库取历史消息 | |
# 使用memory 时必须 prompt 必须含有memory.memory_key 对应的变量 | |
prompt = get_prompt_template("llm_chat", "with_history") | |
chat_prompt = PromptTemplate.from_template(prompt) | |
# 根据conversation_id 获取message 列表进而拼凑 memory | |
memory = ConversationBufferDBMemory(conversation_id=conversation_id, | |
llm=model, | |
message_limit=history_len) | |
else: | |
prompt_template = get_prompt_template("llm_chat", prompt_name) | |
input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
chat_prompt = ChatPromptTemplate.from_messages([input_msg]) | |
chain = LLMChain(prompt=chat_prompt, llm=model, memory=memory) | |
# Begin a task that runs in the background. | |
task = asyncio.create_task(wrap_done( | |
chain.acall({"input": query}), | |
callback.done), | |
) | |
if stream: | |
async for token in callback.aiter(): | |
# Use server-sent-events to stream the response | |
yield json.dumps( | |
{"text": token, "message_id": message_id}, | |
ensure_ascii=False) | |
else: | |
answer = "" | |
async for token in callback.aiter(): | |
answer += token | |
yield json.dumps( | |
{"text": answer, "message_id": message_id}, | |
ensure_ascii=False) | |
await task | |
return EventSourceResponse(chat_iterator()) | |