Spaces:
Running
Running
import os | |
from configs import ( | |
KB_ROOT_PATH, | |
CHUNK_SIZE, | |
OVERLAP_SIZE, | |
ZH_TITLE_ENHANCE, | |
logger, | |
log_verbose, | |
text_splitter_dict, | |
LLM_MODELS, | |
TEXT_SPLITTER_NAME, | |
) | |
import importlib | |
from text_splitter import zh_title_enhance as func_zh_title_enhance | |
import langchain.document_loaders | |
from langchain.docstore.document import Document | |
from langchain.text_splitter import TextSplitter | |
from pathlib import Path | |
from server.utils import run_in_thread_pool, get_model_worker_config | |
import json | |
from typing import List, Union,Dict, Tuple, Generator | |
import chardet | |
def validate_kb_name(knowledge_base_id: str) -> bool: | |
# 检查是否包含预期外的字符或路径攻击关键字 | |
if "../" in knowledge_base_id: | |
return False | |
return True | |
def get_kb_path(knowledge_base_name: str): | |
return os.path.join(KB_ROOT_PATH, knowledge_base_name) | |
def get_doc_path(knowledge_base_name: str): | |
return os.path.join(get_kb_path(knowledge_base_name), "content") | |
def get_vs_path(knowledge_base_name: str, vector_name: str): | |
return os.path.join(get_kb_path(knowledge_base_name), "vector_store", vector_name) | |
def get_file_path(knowledge_base_name: str, doc_name: str): | |
return os.path.join(get_doc_path(knowledge_base_name), doc_name) | |
def list_kbs_from_folder(): | |
return [f for f in os.listdir(KB_ROOT_PATH) | |
if os.path.isdir(os.path.join(KB_ROOT_PATH, f))] | |
def list_files_from_folder(kb_name: str): | |
doc_path = get_doc_path(kb_name) | |
result = [] | |
def is_skiped_path(path: str): | |
tail = os.path.basename(path).lower() | |
for x in ["temp", "tmp", ".", "~$"]: | |
if tail.startswith(x): | |
return True | |
return False | |
def process_entry(entry): | |
if is_skiped_path(entry.path): | |
return | |
if entry.is_symlink(): | |
target_path = os.path.realpath(entry.path) | |
with os.scandir(target_path) as target_it: | |
for target_entry in target_it: | |
process_entry(target_entry) | |
elif entry.is_file(): | |
file_path = (Path(os.path.relpath(entry.path, doc_path)).as_posix()) # 路径统一为 posix 格式 | |
result.append(file_path) | |
elif entry.is_dir(): | |
with os.scandir(entry.path) as it: | |
for sub_entry in it: | |
process_entry(sub_entry) | |
with os.scandir(doc_path) as it: | |
for entry in it: | |
process_entry(entry) | |
return result | |
LOADER_DICT = {"UnstructuredHTMLLoader": ['.html'], | |
"MHTMLLoader": ['.mhtml'], | |
"UnstructuredMarkdownLoader": ['.md'], | |
"JSONLoader": [".json"], | |
"JSONLinesLoader": [".jsonl"], | |
"CSVLoader": [".csv"], | |
# "FilteredCSVLoader": [".csv"], 如果使用自定义分割csv | |
"RapidOCRPDFLoader": [".pdf"], | |
"RapidOCRDocLoader": ['.docx', '.doc'], | |
"RapidOCRPPTLoader": ['.ppt', '.pptx', ], | |
"RapidOCRLoader": ['.png', '.jpg', '.jpeg', '.bmp'], | |
"UnstructuredFileLoader": ['.eml', '.msg', '.rst', | |
'.rtf', '.txt', '.xml', | |
'.epub', '.odt','.tsv'], | |
"UnstructuredEmailLoader": ['.eml', '.msg'], | |
"UnstructuredEPubLoader": ['.epub'], | |
"UnstructuredExcelLoader": ['.xlsx', '.xls', '.xlsd'], | |
"NotebookLoader": ['.ipynb'], | |
"UnstructuredODTLoader": ['.odt'], | |
"PythonLoader": ['.py'], | |
"UnstructuredRSTLoader": ['.rst'], | |
"UnstructuredRTFLoader": ['.rtf'], | |
"SRTLoader": ['.srt'], | |
"TomlLoader": ['.toml'], | |
"UnstructuredTSVLoader": ['.tsv'], | |
"UnstructuredWordDocumentLoader": ['.docx', '.doc'], | |
"UnstructuredXMLLoader": ['.xml'], | |
"UnstructuredPowerPointLoader": ['.ppt', '.pptx'], | |
"EverNoteLoader": ['.enex'], | |
} | |
SUPPORTED_EXTS = [ext for sublist in LOADER_DICT.values() for ext in sublist] | |
# patch json.dumps to disable ensure_ascii | |
def _new_json_dumps(obj, **kwargs): | |
kwargs["ensure_ascii"] = False | |
return _origin_json_dumps(obj, **kwargs) | |
if json.dumps is not _new_json_dumps: | |
_origin_json_dumps = json.dumps | |
json.dumps = _new_json_dumps | |
class JSONLinesLoader(langchain.document_loaders.JSONLoader): | |
''' | |
行式 Json 加载器,要求文件扩展名为 .jsonl | |
''' | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self._json_lines = True | |
langchain.document_loaders.JSONLinesLoader = JSONLinesLoader | |
def get_LoaderClass(file_extension): | |
for LoaderClass, extensions in LOADER_DICT.items(): | |
if file_extension in extensions: | |
return LoaderClass | |
def get_loader(loader_name: str, file_path: str, loader_kwargs: Dict = None): | |
''' | |
根据loader_name和文件路径或内容返回文档加载器。 | |
''' | |
loader_kwargs = loader_kwargs or {} | |
try: | |
if loader_name in ["RapidOCRPDFLoader", "RapidOCRLoader", "FilteredCSVLoader", | |
"RapidOCRDocLoader", "RapidOCRPPTLoader"]: | |
document_loaders_module = importlib.import_module('document_loaders') | |
else: | |
document_loaders_module = importlib.import_module('langchain.document_loaders') | |
DocumentLoader = getattr(document_loaders_module, loader_name) | |
except Exception as e: | |
msg = f"为文件{file_path}查找加载器{loader_name}时出错:{e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
document_loaders_module = importlib.import_module('langchain.document_loaders') | |
DocumentLoader = getattr(document_loaders_module, "UnstructuredFileLoader") | |
if loader_name == "UnstructuredFileLoader": | |
loader_kwargs.setdefault("autodetect_encoding", True) | |
elif loader_name == "CSVLoader": | |
if not loader_kwargs.get("encoding"): | |
# 如果未指定 encoding,自动识别文件编码类型,避免langchain loader 加载文件报编码错误 | |
with open(file_path, 'rb') as struct_file: | |
encode_detect = chardet.detect(struct_file.read()) | |
if encode_detect is None: | |
encode_detect = {"encoding": "utf-8"} | |
loader_kwargs["encoding"] = encode_detect["encoding"] | |
elif loader_name == "JSONLoader": | |
loader_kwargs.setdefault("jq_schema", ".") | |
loader_kwargs.setdefault("text_content", False) | |
elif loader_name == "JSONLinesLoader": | |
loader_kwargs.setdefault("jq_schema", ".") | |
loader_kwargs.setdefault("text_content", False) | |
loader = DocumentLoader(file_path, **loader_kwargs) | |
return loader | |
def make_text_splitter( | |
splitter_name: str = TEXT_SPLITTER_NAME, | |
chunk_size: int = CHUNK_SIZE, | |
chunk_overlap: int = OVERLAP_SIZE, | |
llm_model: str = LLM_MODELS[0], | |
): | |
""" | |
根据参数获取特定的分词器 | |
""" | |
splitter_name = splitter_name or "SpacyTextSplitter" | |
try: | |
if splitter_name == "MarkdownHeaderTextSplitter": # MarkdownHeaderTextSplitter特殊判定 | |
headers_to_split_on = text_splitter_dict[splitter_name]['headers_to_split_on'] | |
text_splitter = langchain.text_splitter.MarkdownHeaderTextSplitter( | |
headers_to_split_on=headers_to_split_on) | |
else: | |
try: ## 优先使用用户自定义的text_splitter | |
text_splitter_module = importlib.import_module('text_splitter') | |
TextSplitter = getattr(text_splitter_module, splitter_name) | |
except: ## 否则使用langchain的text_splitter | |
text_splitter_module = importlib.import_module('langchain.text_splitter') | |
TextSplitter = getattr(text_splitter_module, splitter_name) | |
if text_splitter_dict[splitter_name]["source"] == "tiktoken": ## 从tiktoken加载 | |
try: | |
text_splitter = TextSplitter.from_tiktoken_encoder( | |
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"], | |
pipeline="zh_core_web_sm", | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
except: | |
text_splitter = TextSplitter.from_tiktoken_encoder( | |
encoding_name=text_splitter_dict[splitter_name]["tokenizer_name_or_path"], | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
elif text_splitter_dict[splitter_name]["source"] == "huggingface": ## 从huggingface加载 | |
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "": | |
config = get_model_worker_config(llm_model) | |
text_splitter_dict[splitter_name]["tokenizer_name_or_path"] = \ | |
config.get("model_path") | |
if text_splitter_dict[splitter_name]["tokenizer_name_or_path"] == "gpt2": | |
from transformers import GPT2TokenizerFast | |
from langchain.text_splitter import CharacterTextSplitter | |
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") | |
else: ## 字符长度加载 | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
text_splitter_dict[splitter_name]["tokenizer_name_or_path"], | |
trust_remote_code=True) | |
text_splitter = TextSplitter.from_huggingface_tokenizer( | |
tokenizer=tokenizer, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
else: | |
try: | |
text_splitter = TextSplitter( | |
pipeline="zh_core_web_sm", | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
except: | |
text_splitter = TextSplitter( | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap | |
) | |
except Exception as e: | |
print(e) | |
text_splitter_module = importlib.import_module('langchain.text_splitter') | |
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter") | |
text_splitter = TextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
# If you use SpacyTextSplitter you can use GPU to do split likes Issue #1287 | |
# text_splitter._tokenizer.max_length = 37016792 | |
# text_splitter._tokenizer.prefer_gpu() | |
return text_splitter | |
class KnowledgeFile: | |
def __init__( | |
self, | |
filename: str, | |
knowledge_base_name: str, | |
loader_kwargs: Dict = {}, | |
): | |
''' | |
对应知识库目录中的文件,必须是磁盘上存在的才能进行向量化等操作。 | |
''' | |
self.kb_name = knowledge_base_name | |
self.filename = str(Path(filename).as_posix()) | |
self.ext = os.path.splitext(filename)[-1].lower() | |
if self.ext not in SUPPORTED_EXTS: | |
raise ValueError(f"暂未支持的文件格式 {self.filename}") | |
self.loader_kwargs = loader_kwargs | |
self.filepath = get_file_path(knowledge_base_name, filename) | |
self.docs = None | |
self.splited_docs = None | |
self.document_loader_name = get_LoaderClass(self.ext) | |
self.text_splitter_name = TEXT_SPLITTER_NAME | |
def file2docs(self, refresh: bool = False): | |
if self.docs is None or refresh: | |
logger.info(f"{self.document_loader_name} used for {self.filepath}") | |
loader = get_loader(loader_name=self.document_loader_name, | |
file_path=self.filepath, | |
loader_kwargs=self.loader_kwargs) | |
self.docs = loader.load() | |
return self.docs | |
def docs2texts( | |
self, | |
docs: List[Document] = None, | |
zh_title_enhance: bool = ZH_TITLE_ENHANCE, | |
refresh: bool = False, | |
chunk_size: int = CHUNK_SIZE, | |
chunk_overlap: int = OVERLAP_SIZE, | |
text_splitter: TextSplitter = None, | |
): | |
docs = docs or self.file2docs(refresh=refresh) | |
if not docs: | |
return [] | |
if self.ext not in [".csv"]: | |
if text_splitter is None: | |
text_splitter = make_text_splitter(splitter_name=self.text_splitter_name, chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap) | |
if self.text_splitter_name == "MarkdownHeaderTextSplitter": | |
docs = text_splitter.split_text(docs[0].page_content) | |
else: | |
docs = text_splitter.split_documents(docs) | |
if not docs: | |
return [] | |
print(f"文档切分示例:{docs[0]}") | |
if zh_title_enhance: | |
docs = func_zh_title_enhance(docs) | |
self.splited_docs = docs | |
return self.splited_docs | |
def file2text( | |
self, | |
zh_title_enhance: bool = ZH_TITLE_ENHANCE, | |
refresh: bool = False, | |
chunk_size: int = CHUNK_SIZE, | |
chunk_overlap: int = OVERLAP_SIZE, | |
text_splitter: TextSplitter = None, | |
): | |
if self.splited_docs is None or refresh: | |
docs = self.file2docs() | |
self.splited_docs = self.docs2texts(docs=docs, | |
zh_title_enhance=zh_title_enhance, | |
refresh=refresh, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
text_splitter=text_splitter) | |
return self.splited_docs | |
def file_exist(self): | |
return os.path.isfile(self.filepath) | |
def get_mtime(self): | |
return os.path.getmtime(self.filepath) | |
def get_size(self): | |
return os.path.getsize(self.filepath) | |
def files2docs_in_thread( | |
files: List[Union[KnowledgeFile, Tuple[str, str], Dict]], | |
chunk_size: int = CHUNK_SIZE, | |
chunk_overlap: int = OVERLAP_SIZE, | |
zh_title_enhance: bool = ZH_TITLE_ENHANCE, | |
) -> Generator: | |
''' | |
利用多线程批量将磁盘文件转化成langchain Document. | |
如果传入参数是Tuple,形式为(filename, kb_name) | |
生成器返回值为 status, (kb_name, file_name, docs | error) | |
''' | |
def file2docs(*, file: KnowledgeFile, **kwargs) -> Tuple[bool, Tuple[str, str, List[Document]]]: | |
try: | |
return True, (file.kb_name, file.filename, file.file2text(**kwargs)) | |
except Exception as e: | |
msg = f"从文件 {file.kb_name}/{file.filename} 加载文档时出错:{e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
return False, (file.kb_name, file.filename, msg) | |
kwargs_list = [] | |
for i, file in enumerate(files): | |
kwargs = {} | |
try: | |
if isinstance(file, tuple) and len(file) >= 2: | |
filename = file[0] | |
kb_name = file[1] | |
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name) | |
elif isinstance(file, dict): | |
filename = file.pop("filename") | |
kb_name = file.pop("kb_name") | |
kwargs.update(file) | |
file = KnowledgeFile(filename=filename, knowledge_base_name=kb_name) | |
kwargs["file"] = file | |
kwargs["chunk_size"] = chunk_size | |
kwargs["chunk_overlap"] = chunk_overlap | |
kwargs["zh_title_enhance"] = zh_title_enhance | |
kwargs_list.append(kwargs) | |
except Exception as e: | |
yield False, (kb_name, filename, str(e)) | |
for result in run_in_thread_pool(func=file2docs, params=kwargs_list): | |
yield result | |
if __name__ == "__main__": | |
from pprint import pprint | |
kb_file = KnowledgeFile( | |
filename="/home/congyin/Code/Project_Langchain_0814/Langchain-Chatchat/knowledge_base/csv1/content/gm.csv", | |
knowledge_base_name="samples") | |
# kb_file.text_splitter_name = "RecursiveCharacterTextSplitter" | |
docs = kb_file.file2docs() | |
# pprint(docs[-1]) | |