Spaces:
Running
Running
import os | |
import urllib | |
from fastapi import File, Form, Body, Query, UploadFile | |
from configs import (DEFAULT_VS_TYPE, EMBEDDING_MODEL, | |
VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, | |
CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE, | |
logger, log_verbose, ) | |
from server.utils import BaseResponse, ListResponse, run_in_thread_pool | |
from server.knowledge_base.utils import (validate_kb_name, list_files_from_folder, get_file_path, | |
files2docs_in_thread, KnowledgeFile) | |
from fastapi.responses import FileResponse | |
from sse_starlette import EventSourceResponse | |
from pydantic import Json | |
import json | |
from server.knowledge_base.kb_service.base import KBServiceFactory | |
from server.db.repository.knowledge_file_repository import get_file_detail | |
from langchain.docstore.document import Document | |
from server.knowledge_base.model.kb_document_model import DocumentWithVSId | |
from typing import List, Dict | |
def search_docs( | |
query: str = Body("", description="用户输入", examples=["你好"]), | |
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), | |
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), | |
score_threshold: float = Body(SCORE_THRESHOLD, | |
description="知识库匹配相关度阈值,取值范围在0-1之间," | |
"SCORE越小,相关度越高," | |
"取到1相当于不筛选,建议设置在0.5左右", | |
ge=0, le=1), | |
file_name: str = Body("", description="文件名称,支持 sql 通配符"), | |
metadata: dict = Body({}, description="根据 metadata 进行过滤,仅支持一级键"), | |
) -> List[DocumentWithVSId]: | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
data = [] | |
if kb is not None: | |
if query: | |
docs = kb.search_docs(query, top_k, score_threshold) | |
data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs] | |
elif file_name or metadata: | |
data = kb.list_docs(file_name=file_name, metadata=metadata) | |
return data | |
def update_docs_by_id( | |
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), | |
docs: Dict[str, Document] = Body(..., description="要更新的文档内容,形如:{id: Document, ...}") | |
) -> BaseResponse: | |
''' | |
按照文档 ID 更新文档内容 | |
''' | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=500, msg=f"指定的知识库 {knowledge_base_name} 不存在") | |
if kb.update_doc_by_ids(docs=docs): | |
return BaseResponse(msg=f"文档更新成功") | |
else: | |
return BaseResponse(msg=f"文档更新失败") | |
def list_files( | |
knowledge_base_name: str | |
) -> ListResponse: | |
if not validate_kb_name(knowledge_base_name): | |
return ListResponse(code=403, msg="Don't attack me", data=[]) | |
knowledge_base_name = urllib.parse.unquote(knowledge_base_name) | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[]) | |
else: | |
all_doc_names = kb.list_files() | |
return ListResponse(data=all_doc_names) | |
def _save_files_in_thread(files: List[UploadFile], | |
knowledge_base_name: str, | |
override: bool): | |
""" | |
通过多线程将上传的文件保存到对应知识库目录内。 | |
生成器返回保存结果:{"code":200, "msg": "xxx", "data": {"knowledge_base_name":"xxx", "file_name": "xxx"}} | |
""" | |
def save_file(file: UploadFile, knowledge_base_name: str, override: bool) -> dict: | |
''' | |
保存单个文件。 | |
''' | |
try: | |
filename = file.filename | |
file_path = get_file_path(knowledge_base_name=knowledge_base_name, doc_name=filename) | |
data = {"knowledge_base_name": knowledge_base_name, "file_name": filename} | |
file_content = file.file.read() # 读取上传文件的内容 | |
if (os.path.isfile(file_path) | |
and not override | |
and os.path.getsize(file_path) == len(file_content) | |
): | |
file_status = f"文件 {filename} 已存在。" | |
logger.warn(file_status) | |
return dict(code=404, msg=file_status, data=data) | |
if not os.path.isdir(os.path.dirname(file_path)): | |
os.makedirs(os.path.dirname(file_path)) | |
with open(file_path, "wb") as f: | |
f.write(file_content) | |
return dict(code=200, msg=f"成功上传文件 {filename}", data=data) | |
except Exception as e: | |
msg = f"{filename} 文件上传失败,报错信息为: {e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
return dict(code=500, msg=msg, data=data) | |
params = [{"file": file, "knowledge_base_name": knowledge_base_name, "override": override} for file in files] | |
for result in run_in_thread_pool(save_file, params=params): | |
yield result | |
# def files2docs(files: List[UploadFile] = File(..., description="上传文件,支持多文件"), | |
# knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]), | |
# override: bool = Form(False, description="覆盖已有文件"), | |
# save: bool = Form(True, description="是否将文件保存到知识库目录")): | |
# def save_files(files, knowledge_base_name, override): | |
# for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override): | |
# yield json.dumps(result, ensure_ascii=False) | |
# def files_to_docs(files): | |
# for result in files2docs_in_thread(files): | |
# yield json.dumps(result, ensure_ascii=False) | |
def upload_docs( | |
files: List[UploadFile] = File(..., description="上传文件,支持多文件"), | |
knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]), | |
override: bool = Form(False, description="覆盖已有文件"), | |
to_vector_store: bool = Form(True, description="上传文件后是否进行向量化"), | |
chunk_size: int = Form(CHUNK_SIZE, description="知识库中单段文本最大长度"), | |
chunk_overlap: int = Form(OVERLAP_SIZE, description="知识库中相邻文本重合长度"), | |
zh_title_enhance: bool = Form(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"), | |
docs: Json = Form({}, description="自定义的docs,需要转为json字符串", | |
examples=[{"test.txt": [Document(page_content="custom doc")]}]), | |
not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"), | |
) -> BaseResponse: | |
""" | |
API接口:上传文件,并/或向量化 | |
""" | |
if not validate_kb_name(knowledge_base_name): | |
return BaseResponse(code=403, msg="Don't attack me") | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") | |
failed_files = {} | |
file_names = list(docs.keys()) | |
# 先将上传的文件保存到磁盘 | |
for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override): | |
filename = result["data"]["file_name"] | |
if result["code"] != 200: | |
failed_files[filename] = result["msg"] | |
if filename not in file_names: | |
file_names.append(filename) | |
# 对保存的文件进行向量化 | |
if to_vector_store: | |
result = update_docs( | |
knowledge_base_name=knowledge_base_name, | |
file_names=file_names, | |
override_custom_docs=True, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
zh_title_enhance=zh_title_enhance, | |
docs=docs, | |
not_refresh_vs_cache=True, | |
) | |
failed_files.update(result.data["failed_files"]) | |
if not not_refresh_vs_cache: | |
kb.save_vector_store() | |
return BaseResponse(code=200, msg="文件上传与向量化完成", data={"failed_files": failed_files}) | |
def delete_docs( | |
knowledge_base_name: str = Body(..., examples=["samples"]), | |
file_names: List[str] = Body(..., examples=[["file_name.md", "test.txt"]]), | |
delete_content: bool = Body(False), | |
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"), | |
) -> BaseResponse: | |
if not validate_kb_name(knowledge_base_name): | |
return BaseResponse(code=403, msg="Don't attack me") | |
knowledge_base_name = urllib.parse.unquote(knowledge_base_name) | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") | |
failed_files = {} | |
for file_name in file_names: | |
if not kb.exist_doc(file_name): | |
failed_files[file_name] = f"未找到文件 {file_name}" | |
try: | |
kb_file = KnowledgeFile(filename=file_name, | |
knowledge_base_name=knowledge_base_name) | |
kb.delete_doc(kb_file, delete_content, not_refresh_vs_cache=True) | |
except Exception as e: | |
msg = f"{file_name} 文件删除失败,错误信息:{e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
failed_files[file_name] = msg | |
if not not_refresh_vs_cache: | |
kb.save_vector_store() | |
return BaseResponse(code=200, msg=f"文件删除完成", data={"failed_files": failed_files}) | |
def update_info( | |
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), | |
kb_info: str = Body(..., description="知识库介绍", examples=["这是一个知识库"]), | |
): | |
if not validate_kb_name(knowledge_base_name): | |
return BaseResponse(code=403, msg="Don't attack me") | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") | |
kb.update_info(kb_info) | |
return BaseResponse(code=200, msg=f"知识库介绍修改完成", data={"kb_info": kb_info}) | |
def update_docs( | |
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), | |
file_names: List[str] = Body(..., description="文件名称,支持多文件", examples=[["file_name1", "text.txt"]]), | |
chunk_size: int = Body(CHUNK_SIZE, description="知识库中单段文本最大长度"), | |
chunk_overlap: int = Body(OVERLAP_SIZE, description="知识库中相邻文本重合长度"), | |
zh_title_enhance: bool = Body(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"), | |
override_custom_docs: bool = Body(False, description="是否覆盖之前自定义的docs"), | |
docs: Json = Body({}, description="自定义的docs,需要转为json字符串", | |
examples=[{"test.txt": [Document(page_content="custom doc")]}]), | |
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"), | |
) -> BaseResponse: | |
""" | |
更新知识库文档 | |
""" | |
if not validate_kb_name(knowledge_base_name): | |
return BaseResponse(code=403, msg="Don't attack me") | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") | |
failed_files = {} | |
kb_files = [] | |
# 生成需要加载docs的文件列表 | |
for file_name in file_names: | |
file_detail = get_file_detail(kb_name=knowledge_base_name, filename=file_name) | |
# 如果该文件之前使用了自定义docs,则根据参数决定略过或覆盖 | |
if file_detail.get("custom_docs") and not override_custom_docs: | |
continue | |
if file_name not in docs: | |
try: | |
kb_files.append(KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name)) | |
except Exception as e: | |
msg = f"加载文档 {file_name} 时出错:{e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
failed_files[file_name] = msg | |
# 从文件生成docs,并进行向量化。 | |
# 这里利用了KnowledgeFile的缓存功能,在多线程中加载Document,然后传给KnowledgeFile | |
for status, result in files2docs_in_thread(kb_files, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
zh_title_enhance=zh_title_enhance): | |
if status: | |
kb_name, file_name, new_docs = result | |
kb_file = KnowledgeFile(filename=file_name, | |
knowledge_base_name=knowledge_base_name) | |
kb_file.splited_docs = new_docs | |
kb.update_doc(kb_file, not_refresh_vs_cache=True) | |
else: | |
kb_name, file_name, error = result | |
failed_files[file_name] = error | |
# 将自定义的docs进行向量化 | |
for file_name, v in docs.items(): | |
try: | |
v = [x if isinstance(x, Document) else Document(**x) for x in v] | |
kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name) | |
kb.update_doc(kb_file, docs=v, not_refresh_vs_cache=True) | |
except Exception as e: | |
msg = f"为 {file_name} 添加自定义docs时出错:{e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
failed_files[file_name] = msg | |
if not not_refresh_vs_cache: | |
kb.save_vector_store() | |
return BaseResponse(code=200, msg=f"更新文档完成", data={"failed_files": failed_files}) | |
def download_doc( | |
knowledge_base_name: str = Query(..., description="知识库名称", examples=["samples"]), | |
file_name: str = Query(..., description="文件名称", examples=["test.txt"]), | |
preview: bool = Query(False, description="是:浏览器内预览;否:下载"), | |
): | |
""" | |
下载知识库文档 | |
""" | |
if not validate_kb_name(knowledge_base_name): | |
return BaseResponse(code=403, msg="Don't attack me") | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") | |
if preview: | |
content_disposition_type = "inline" | |
else: | |
content_disposition_type = None | |
try: | |
kb_file = KnowledgeFile(filename=file_name, | |
knowledge_base_name=knowledge_base_name) | |
if os.path.exists(kb_file.filepath): | |
return FileResponse( | |
path=kb_file.filepath, | |
filename=kb_file.filename, | |
media_type="multipart/form-data", | |
content_disposition_type=content_disposition_type, | |
) | |
except Exception as e: | |
msg = f"{kb_file.filename} 读取文件失败,错误信息是:{e}" | |
logger.error(f'{e.__class__.__name__}: {msg}', | |
exc_info=e if log_verbose else None) | |
return BaseResponse(code=500, msg=msg) | |
return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败") | |
def recreate_vector_store( | |
knowledge_base_name: str = Body(..., examples=["samples"]), | |
allow_empty_kb: bool = Body(True), | |
vs_type: str = Body(DEFAULT_VS_TYPE), | |
embed_model: str = Body(EMBEDDING_MODEL), | |
chunk_size: int = Body(CHUNK_SIZE, description="知识库中单段文本最大长度"), | |
chunk_overlap: int = Body(OVERLAP_SIZE, description="知识库中相邻文本重合长度"), | |
zh_title_enhance: bool = Body(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"), | |
not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"), | |
): | |
""" | |
recreate vector store from the content. | |
this is usefull when user can copy files to content folder directly instead of upload through network. | |
by default, get_service_by_name only return knowledge base in the info.db and having document files in it. | |
set allow_empty_kb to True make it applied on empty knowledge base which it not in the info.db or having no documents. | |
""" | |
def output(): | |
kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model) | |
if not kb.exists() and not allow_empty_kb: | |
yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"} | |
else: | |
if kb.exists(): | |
kb.clear_vs() | |
kb.create_kb() | |
files = list_files_from_folder(knowledge_base_name) | |
kb_files = [(file, knowledge_base_name) for file in files] | |
i = 0 | |
for status, result in files2docs_in_thread(kb_files, | |
chunk_size=chunk_size, | |
chunk_overlap=chunk_overlap, | |
zh_title_enhance=zh_title_enhance): | |
if status: | |
kb_name, file_name, docs = result | |
kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=kb_name) | |
kb_file.splited_docs = docs | |
yield json.dumps({ | |
"code": 200, | |
"msg": f"({i + 1} / {len(files)}): {file_name}", | |
"total": len(files), | |
"finished": i + 1, | |
"doc": file_name, | |
}, ensure_ascii=False) | |
kb.add_doc(kb_file, not_refresh_vs_cache=True) | |
else: | |
kb_name, file_name, error = result | |
msg = f"添加文件‘{file_name}’到知识库‘{knowledge_base_name}’时出错:{error}。已跳过。" | |
logger.error(msg) | |
yield json.dumps({ | |
"code": 500, | |
"msg": msg, | |
}) | |
i += 1 | |
if not not_refresh_vs_cache: | |
kb.save_vector_store() | |
return EventSourceResponse(output()) | |