Spaces:
Running
Running
from fastapi import Body, Request | |
from sse_starlette.sse import EventSourceResponse | |
from fastapi.concurrency import run_in_threadpool | |
from configs import (LLM_MODELS, | |
VECTOR_SEARCH_TOP_K, | |
SCORE_THRESHOLD, | |
TEMPERATURE, | |
USE_RERANKER, | |
RERANKER_MODEL, | |
RERANKER_MAX_LENGTH, | |
MODEL_PATH) | |
from server.utils import wrap_done, get_ChatOpenAI | |
from server.utils import BaseResponse, get_prompt_template | |
from langchain.chains import LLMChain | |
from langchain.callbacks import AsyncIteratorCallbackHandler | |
from typing import AsyncIterable, List, Optional | |
import asyncio | |
from langchain.prompts.chat import ChatPromptTemplate | |
from server.chat.utils import History | |
from server.knowledge_base.kb_service.base import KBServiceFactory | |
import json | |
from urllib.parse import urlencode | |
from server.knowledge_base.kb_doc_api import search_docs | |
from server.reranker.reranker import LangchainReranker | |
from server.utils import embedding_device | |
async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]), | |
knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), | |
top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), | |
score_threshold: float = Body( | |
SCORE_THRESHOLD, | |
description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", | |
ge=0, | |
le=2 | |
), | |
history: List[History] = Body( | |
[], | |
description="历史对话", | |
examples=[[ | |
{"role": "user", | |
"content": "我们来玩成语接龙,我先来,生龙活虎"}, | |
{"role": "assistant", | |
"content": "虎头虎脑"}]] | |
), | |
stream: bool = Body(False, description="流式输出"), | |
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), | |
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), | |
max_tokens: Optional[int] = Body( | |
None, | |
description="限制LLM生成Token数量,默认None代表模型最大值" | |
), | |
prompt_name: str = Body( | |
"default", | |
description="使用的prompt模板名称(在configs/prompt_config.py中配置)" | |
), | |
request: Request = None, | |
): | |
kb = KBServiceFactory.get_service_by_name(knowledge_base_name) | |
if kb is None: | |
return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") | |
history = [History.from_data(h) for h in history] | |
async def knowledge_base_chat_iterator( | |
query: str, | |
top_k: int, | |
history: Optional[List[History]], | |
model_name: str = model_name, | |
prompt_name: str = prompt_name, | |
) -> AsyncIterable[str]: | |
nonlocal max_tokens | |
callback = AsyncIteratorCallbackHandler() | |
if isinstance(max_tokens, int) and max_tokens <= 0: | |
max_tokens = None | |
model = get_ChatOpenAI( | |
model_name=model_name, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
callbacks=[callback], | |
) | |
docs = await run_in_threadpool(search_docs, | |
query=query, | |
knowledge_base_name=knowledge_base_name, | |
top_k=top_k, | |
score_threshold=score_threshold) | |
# 加入reranker | |
if USE_RERANKER: | |
reranker_model_path = MODEL_PATH["reranker"].get(RERANKER_MODEL,"BAAI/bge-reranker-large") | |
print("-----------------model path------------------") | |
print(reranker_model_path) | |
reranker_model = LangchainReranker(top_n=top_k, | |
device=embedding_device(), | |
max_length=RERANKER_MAX_LENGTH, | |
model_name_or_path=reranker_model_path | |
) | |
print(docs) | |
docs = reranker_model.compress_documents(documents=docs, | |
query=query) | |
print("---------after rerank------------------") | |
print(docs) | |
context = "\n".join([doc.page_content for doc in docs]) | |
if len(docs) == 0: # 如果没有找到相关文档,使用empty模板 | |
prompt_template = get_prompt_template("knowledge_base_chat", "empty") | |
else: | |
prompt_template = get_prompt_template("knowledge_base_chat", prompt_name) | |
input_msg = History(role="user", content=prompt_template).to_msg_template(False) | |
chat_prompt = ChatPromptTemplate.from_messages( | |
[i.to_msg_template() for i in history] + [input_msg]) | |
chain = LLMChain(prompt=chat_prompt, llm=model) | |
# Begin a task that runs in the background. | |
task = asyncio.create_task(wrap_done( | |
chain.acall({"context": context, "question": query}), | |
callback.done), | |
) | |
source_documents = [] | |
for inum, doc in enumerate(docs): | |
filename = doc.metadata.get("source") | |
parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename}) | |
base_url = request.base_url | |
url = f"{base_url}knowledge_base/download_doc?" + parameters | |
text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n""" | |
source_documents.append(text) | |
if len(source_documents) == 0: # 没有找到相关文档 | |
source_documents.append(f"<span style='color:red'>未找到相关文档,该回答为大模型自身能力解答!</span>") | |
if stream: | |
async for token in callback.aiter(): | |
# Use server-sent-events to stream the response | |
yield json.dumps({"answer": token}, ensure_ascii=False) | |
yield json.dumps({"docs": source_documents}, ensure_ascii=False) | |
else: | |
answer = "" | |
async for token in callback.aiter(): | |
answer += token | |
yield json.dumps({"answer": answer, | |
"docs": source_documents}, | |
ensure_ascii=False) | |
await task | |
return EventSourceResponse(knowledge_base_chat_iterator(query, top_k, history,model_name,prompt_name)) | |