Spaces:
Running
Running
from langchain.text_splitter import CharacterTextSplitter | |
import re | |
from typing import List | |
class AliTextSplitter(CharacterTextSplitter): | |
def __init__(self, pdf: bool = False, **kwargs): | |
super().__init__(**kwargs) | |
self.pdf = pdf | |
def split_text(self, text: str) -> List[str]: | |
# use_document_segmentation参数指定是否用语义切分文档,此处采取的文档语义分割模型为达摩院开源的nlp_bert_document-segmentation_chinese-base,论文见https://arxiv.org/abs/2107.09278 | |
# 如果使用模型进行文档语义切分,那么需要安装modelscope[nlp]:pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html | |
# 考虑到使用了三个模型,可能对于低配置gpu不太友好,因此这里将模型load进cpu计算,有需要的话可以替换device为自己的显卡id | |
if self.pdf: | |
text = re.sub(r"\n{3,}", r"\n", text) | |
text = re.sub('\s', " ", text) | |
text = re.sub("\n\n", "", text) | |
try: | |
from modelscope.pipelines import pipeline | |
except ImportError: | |
raise ImportError( | |
"Could not import modelscope python package. " | |
"Please install modelscope with `pip install modelscope`. " | |
) | |
p = pipeline( | |
task="document-segmentation", | |
model='damo/nlp_bert_document-segmentation_chinese-base', | |
device="cpu") | |
result = p(documents=text) | |
sent_list = [i for i in result["text"].split("\n\t") if i] | |
return sent_list | |