Spaces:
Running
Running
from fastapi import Body | |
from sse_starlette.sse import EventSourceResponse | |
from configs import LLM_MODELS, TEMPERATURE | |
from server.utils import wrap_done, get_OpenAI | |
from langchain.chains import LLMChain | |
from langchain.callbacks import AsyncIteratorCallbackHandler | |
from typing import AsyncIterable, Optional | |
import asyncio | |
from langchain.prompts import PromptTemplate | |
from server.utils import get_prompt_template | |
async def completion(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]), | |
stream: bool = Body(False, description="流式输出"), | |
echo: bool = Body(False, description="除了输出之外,还回显输入"), | |
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), | |
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), | |
max_tokens: Optional[int] = Body(1024, description="限制LLM生成Token数量,默认None代表模型最大值"), | |
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0), | |
prompt_name: str = Body("default", | |
description="使用的prompt模板名称(在configs/prompt_config.py中配置)"), | |
): | |
#todo 因ApiModelWorker 默认是按chat处理的,会对params["prompt"] 解析为messages,因此ApiModelWorker 使用时需要有相应处理 | |
async def completion_iterator(query: str, | |
model_name: str = LLM_MODELS[0], | |
prompt_name: str = prompt_name, | |
echo: bool = echo, | |
) -> AsyncIterable[str]: | |
nonlocal max_tokens | |
callback = AsyncIteratorCallbackHandler() | |
if isinstance(max_tokens, int) and max_tokens <= 0: | |
max_tokens = None | |
model = get_OpenAI( | |
model_name=model_name, | |
temperature=temperature, | |
max_tokens=max_tokens, | |
callbacks=[callback], | |
echo=echo | |
) | |
prompt_template = get_prompt_template("completion", prompt_name) | |
prompt = PromptTemplate.from_template(prompt_template) | |
chain = LLMChain(prompt=prompt, llm=model) | |
# Begin a task that runs in the background. | |
task = asyncio.create_task(wrap_done( | |
chain.acall({"input": query}), | |
callback.done), | |
) | |
if stream: | |
async for token in callback.aiter(): | |
# Use server-sent-events to stream the response | |
yield token | |
else: | |
answer = "" | |
async for token in callback.aiter(): | |
answer += token | |
yield answer | |
await task | |
return EventSourceResponse(completion_iterator(query=query, | |
model_name=model_name, | |
prompt_name=prompt_name), | |
) | |