Zulelee's picture
Upload 254 files
5e9cd1d verified
raw
history blame
3.12 kB
from fastapi import Body
from sse_starlette.sse import EventSourceResponse
from configs import LLM_MODELS, TEMPERATURE
from server.utils import wrap_done, get_OpenAI
from langchain.chains import LLMChain
from langchain.callbacks import AsyncIteratorCallbackHandler
from typing import AsyncIterable, Optional
import asyncio
from langchain.prompts import PromptTemplate
from server.utils import get_prompt_template
async def completion(query: str = Body(..., description="用户输入", examples=["恼羞成怒"]),
stream: bool = Body(False, description="流式输出"),
echo: bool = Body(False, description="除了输出之外,还回显输入"),
model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"),
temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0),
max_tokens: Optional[int] = Body(1024, description="限制LLM生成Token数量,默认None代表模型最大值"),
# top_p: float = Body(TOP_P, description="LLM 核采样。勿与temperature同时设置", gt=0.0, lt=1.0),
prompt_name: str = Body("default",
description="使用的prompt模板名称(在configs/prompt_config.py中配置)"),
):
#todo 因ApiModelWorker 默认是按chat处理的,会对params["prompt"] 解析为messages,因此ApiModelWorker 使用时需要有相应处理
async def completion_iterator(query: str,
model_name: str = LLM_MODELS[0],
prompt_name: str = prompt_name,
echo: bool = echo,
) -> AsyncIterable[str]:
nonlocal max_tokens
callback = AsyncIteratorCallbackHandler()
if isinstance(max_tokens, int) and max_tokens <= 0:
max_tokens = None
model = get_OpenAI(
model_name=model_name,
temperature=temperature,
max_tokens=max_tokens,
callbacks=[callback],
echo=echo
)
prompt_template = get_prompt_template("completion", prompt_name)
prompt = PromptTemplate.from_template(prompt_template)
chain = LLMChain(prompt=prompt, llm=model)
# Begin a task that runs in the background.
task = asyncio.create_task(wrap_done(
chain.acall({"input": query}),
callback.done),
)
if stream:
async for token in callback.aiter():
# Use server-sent-events to stream the response
yield token
else:
answer = ""
async for token in callback.aiter():
answer += token
yield answer
await task
return EventSourceResponse(completion_iterator(query=query,
model_name=model_name,
prompt_name=prompt_name),
)