Spaces:
Running
Running
import sys | |
from fastchat.conversation import Conversation | |
from server.model_workers.base import * | |
from server.utils import get_httpx_client | |
from fastchat import conversation as conv | |
import json, httpx | |
from typing import List, Dict | |
from configs import logger, log_verbose | |
class GeminiWorker(ApiModelWorker): | |
def __init__( | |
self, | |
*, | |
controller_addr: str = None, | |
worker_addr: str = None, | |
model_names: List[str] = ["gemini-api"], | |
**kwargs, | |
): | |
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr) | |
kwargs.setdefault("context_len", 4096) | |
super().__init__(**kwargs) | |
def create_gemini_messages(self, messages) -> json: | |
has_history = any(msg['role'] == 'assistant' for msg in messages) | |
gemini_msg = [] | |
for msg in messages: | |
role = msg['role'] | |
content = msg['content'] | |
if role == 'system': | |
continue | |
if has_history: | |
if role == 'assistant': | |
role = "model" | |
transformed_msg = {"role": role, "parts": [{"text": content}]} | |
else: | |
if role == 'user': | |
transformed_msg = {"parts": [{"text": content}]} | |
gemini_msg.append(transformed_msg) | |
msg = dict(contents=gemini_msg) | |
return msg | |
def do_chat(self, params: ApiChatParams) -> Dict: | |
params.load_config(self.model_names[0]) | |
data = self.create_gemini_messages(messages=params.messages) | |
generationConfig = dict( | |
temperature=params.temperature, | |
topK=1, | |
topP=1, | |
maxOutputTokens=4096, | |
stopSequences=[] | |
) | |
data['generationConfig'] = generationConfig | |
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-pro:generateContent" + '?key=' + params.api_key | |
headers = { | |
'Content-Type': 'application/json', | |
} | |
if log_verbose: | |
logger.info(f'{self.__class__.__name__}:url: {url}') | |
logger.info(f'{self.__class__.__name__}:headers: {headers}') | |
logger.info(f'{self.__class__.__name__}:data: {data}') | |
text = "" | |
json_string = "" | |
timeout = httpx.Timeout(60.0) | |
client = get_httpx_client(timeout=timeout) | |
with client.stream("POST", url, headers=headers, json=data) as response: | |
for line in response.iter_lines(): | |
line = line.strip() | |
if not line or "[DONE]" in line: | |
continue | |
json_string += line | |
try: | |
resp = json.loads(json_string) | |
if 'candidates' in resp: | |
for candidate in resp['candidates']: | |
content = candidate.get('content', {}) | |
parts = content.get('parts', []) | |
for part in parts: | |
if 'text' in part: | |
text += part['text'] | |
yield { | |
"error_code": 0, | |
"text": text | |
} | |
print(text) | |
except json.JSONDecodeError as e: | |
print("Failed to decode JSON:", e) | |
print("Invalid JSON string:", json_string) | |
def get_embeddings(self, params): | |
print("embedding") | |
print(params) | |
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: | |
return conv.Conversation( | |
name=self.model_names[0], | |
system_message="You are a helpful, respectful and honest assistant.", | |
messages=[], | |
roles=["user", "assistant"], | |
sep="\n### ", | |
stop_str="###", | |
) | |
if __name__ == "__main__": | |
import uvicorn | |
from server.utils import MakeFastAPIOffline | |
from fastchat.serve.base_model_worker import app | |
worker = GeminiWorker( | |
controller_addr="http://127.0.0.1:20001", | |
worker_addr="http://127.0.0.1:21012", | |
) | |
sys.modules["fastchat.serve.model_worker"].worker = worker | |
MakeFastAPIOffline(app) | |
uvicorn.run(app, port=21012) | |