Spaces:
Runtime error
Runtime error
# Copyright (c) 2024 Jaerin Lee | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
import sys | |
sys.path.append('../../src') | |
import argparse | |
import random | |
import time | |
import json | |
import os | |
import glob | |
import pathlib | |
from functools import partial | |
from pprint import pprint | |
import numpy as np | |
from PIL import Image | |
import torch | |
import gradio as gr | |
from huggingface_hub import snapshot_download | |
import spaces | |
from model import StableMultiDiffusionSDXLPipeline | |
from util import seed_everything | |
from prompt_util import preprocess_prompts, _quality_dict, _style_dict | |
from share_btn import share_js | |
### Utils | |
def log_state(state): | |
pprint(vars(opt)) | |
if isinstance(state, gr.State): | |
state = state.value | |
pprint(vars(state)) | |
def is_empty_image(im: Image.Image) -> bool: | |
if im is None: | |
return True | |
im = np.array(im) | |
has_alpha = (im.shape[2] == 4) | |
if not has_alpha: | |
return False | |
elif im.sum() == 0: | |
return True | |
else: | |
return False | |
### Argument passing | |
# parser = argparse.ArgumentParser(description='Semantic Palette demo powered by StreamMultiDiffusion with SDXL support.') | |
# parser.add_argument('-H', '--height', type=int, default=1024) | |
# parser.add_argument('-W', '--width', type=int, default=2560) | |
# parser.add_argument('--model', type=str, default=None) | |
# parser.add_argument('--bootstrap_steps', type=int, default=1) | |
# parser.add_argument('--seed', type=int, default=-1) | |
# parser.add_argument('--device', type=int, default=0) | |
# parser.add_argument('--port', type=int, default=8000) | |
# opt = parser.parse_args() | |
opt = argparse.Namespace() | |
opt.height = 1024 | |
opt.width = 2560 | |
opt.model = None | |
opt.bootstrap_steps = 3 | |
opt.seed = -1 | |
# opt.device = 0 | |
# opt.port = 8000 | |
### Global variables and data structures | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(device) | |
if opt.model is None: | |
model_dict = { | |
'Animagine XL 3.1': 'cagliostrolab/animagine-xl-3.1', | |
} | |
else: | |
if opt.model.endswith('.safetensors'): | |
opt.model = os.path.abspath(os.path.join('checkpoints', opt.model)) | |
model_dict = {os.path.splitext(os.path.basename(opt.model))[0]: opt.model} | |
models = { | |
k: StableMultiDiffusionSDXLPipeline(device, hf_key=v, has_i2t=False).cuda() | |
for k, v in model_dict.items() | |
} | |
prompt_suggestions = [ | |
'1girl, souryuu asuka langley, neon genesis evangelion, solo, upper body, v, smile, looking at viewer', | |
'1boy, solo, portrait, looking at viewer, white t-shirt, brown hair', | |
'1girl, arima kana, oshi no ko, solo, upper body, from behind', | |
] | |
opt.max_palettes = 5 | |
opt.default_prompt_strength = 1.0 | |
opt.default_mask_strength = 1.0 | |
opt.default_mask_std = 0.0 | |
opt.default_negative_prompt = ( | |
'nsfw, worst quality, bad quality, normal quality, cropped, framed' | |
) | |
opt.verbose = True | |
opt.colors = [ | |
'#000000', | |
'#2692F3', | |
'#F89E12', | |
'#16C232', | |
'#F92F6C', | |
'#AC6AEB', | |
# '#92C62C', | |
# '#92C6EC', | |
# '#FECAC0', | |
] | |
### Event handlers | |
def add_palette(state): | |
old_actives = state.active_palettes | |
state.active_palettes = min(state.active_palettes + 1, opt.max_palettes) | |
if opt.verbose: | |
log_state(state) | |
if state.active_palettes != old_actives: | |
return [state] + [ | |
gr.update() if state.active_palettes != opt.max_palettes else gr.update(visible=False) | |
] + [ | |
gr.update() if i != state.active_palettes - 1 else gr.update(value=state.prompt_names[i + 1], visible=True) | |
for i in range(opt.max_palettes) | |
] | |
else: | |
return [state] + [gr.update() for i in range(opt.max_palettes + 1)] | |
def select_palette(state, button, idx): | |
if idx < 0 or idx > opt.max_palettes: | |
idx = 0 | |
old_idx = state.current_palette | |
if old_idx == idx: | |
return [state] + [gr.update() for _ in range(opt.max_palettes + 7)] | |
state.current_palette = idx | |
if opt.verbose: | |
log_state(state) | |
updates = [state] + [ | |
gr.update() if i not in (idx, old_idx) else | |
gr.update(variant='secondary') if i == old_idx else gr.update(variant='primary') | |
for i in range(opt.max_palettes + 1) | |
] | |
label = 'Background' if idx == 0 else f'Palette {idx}' | |
updates.extend([ | |
gr.update(value=button, interactive=(idx > 0)), | |
gr.update(value=state.prompts[idx], label=f'Edit Prompt for {label}'), | |
gr.update(value=state.neg_prompts[idx], label=f'Edit Negative Prompt for {label}'), | |
( | |
gr.update(value=state.mask_strengths[idx - 1], interactive=True) if idx > 0 else | |
gr.update(value=opt.default_mask_strength, interactive=False) | |
), | |
( | |
gr.update(value=state.prompt_strengths[idx - 1], interactive=True) if idx > 0 else | |
gr.update(value=opt.default_prompt_strength, interactive=False) | |
), | |
( | |
gr.update(value=state.mask_stds[idx - 1], interactive=True) if idx > 0 else | |
gr.update(value=opt.default_mask_std, interactive=False) | |
), | |
]) | |
return updates | |
def change_prompt_strength(state, strength): | |
if state.current_palette == 0: | |
return state | |
state.prompt_strengths[state.current_palette - 1] = strength | |
if opt.verbose: | |
log_state(state) | |
return state | |
def change_std(state, std): | |
if state.current_palette == 0: | |
return state | |
state.mask_stds[state.current_palette - 1] = std | |
if opt.verbose: | |
log_state(state) | |
return state | |
def change_mask_strength(state, strength): | |
if state.current_palette == 0: | |
return state | |
state.mask_strengths[state.current_palette - 1] = strength | |
if opt.verbose: | |
log_state(state) | |
return state | |
def reset_seed(state, seed): | |
state.seed = seed | |
if opt.verbose: | |
log_state(state) | |
return state | |
def rename_prompt(state, name): | |
state.prompt_names[state.current_palette] = name | |
if opt.verbose: | |
log_state(state) | |
return [state] + [ | |
gr.update() if i != state.current_palette else gr.update(value=name) | |
for i in range(opt.max_palettes + 1) | |
] | |
def change_prompt(state, prompt): | |
state.prompts[state.current_palette] = prompt | |
if opt.verbose: | |
log_state(state) | |
return state | |
def change_neg_prompt(state, neg_prompt): | |
state.neg_prompts[state.current_palette] = neg_prompt | |
if opt.verbose: | |
log_state(state) | |
return state | |
def select_model(state, model_id): | |
state.model_id = model_id | |
if opt.verbose: | |
log_state(state) | |
return state | |
def select_style(state, style_name): | |
state.style_name = style_name | |
if opt.verbose: | |
log_state(state) | |
return state | |
def select_quality(state, quality_name): | |
state.quality_name = quality_name | |
if opt.verbose: | |
log_state(state) | |
return state | |
def import_state(state, json_text): | |
current_palette = state.current_palette | |
# active_palettes = state.active_palettes | |
state = argparse.Namespace(**json.loads(json_text)) | |
state.active_palettes = opt.max_palettes | |
return [state] + [ | |
gr.update(value=v, visible=True) for v in state.prompt_names | |
] + [ | |
state.model_id, | |
state.style_name, | |
state.quality_name, | |
state.prompts[current_palette], | |
state.prompt_names[current_palette], | |
state.neg_prompts[current_palette], | |
state.prompt_strengths[current_palette - 1], | |
state.mask_strengths[current_palette - 1], | |
state.mask_stds[current_palette - 1], | |
state.seed, | |
] | |
### Main worker | |
def generate(state, *args, **kwargs): | |
return models[state.model_id](*args, **kwargs) | |
def run(state, drawpad): | |
seed_everything(state.seed if state.seed >=0 else np.random.randint(2147483647)) | |
print('Generate!') | |
background = drawpad['background'].convert('RGBA') | |
inpainting_mode = np.asarray(background).sum() != 0 | |
print('Inpainting mode: ', inpainting_mode) | |
user_input = np.asarray(drawpad['layers'][0]) # (H, W, 4) | |
foreground_mask = torch.tensor(user_input[..., -1])[None, None] # (1, 1, H, W) | |
user_input = torch.tensor(user_input[..., :-1]) # (H, W, 3) | |
palette = torch.tensor([ | |
tuple(int(s[i+1:i+3], 16) for i in (0, 2, 4)) | |
for s in opt.colors[1:] | |
]) # (N, 3) | |
masks = (palette[:, None, None, :] == user_input[None]).all(dim=-1)[:, None, ...] # (N, 1, H, W) | |
has_masks = [i for i, m in enumerate(masks.sum(dim=(1, 2, 3)) == 0) if not m] | |
print('Has mask: ', has_masks) | |
masks = masks * foreground_mask | |
masks = masks[has_masks] | |
if inpainting_mode: | |
prompts = [state.prompts[v + 1] for v in has_masks] | |
negative_prompts = [state.neg_prompts[v + 1] for v in has_masks] | |
mask_strengths = [state.mask_strengths[v] for v in has_masks] | |
mask_stds = [state.mask_stds[v] for v in has_masks] | |
prompt_strengths = [state.prompt_strengths[v] for v in has_masks] | |
else: | |
masks = torch.cat([torch.ones_like(foreground_mask), masks], dim=0) | |
prompts = [state.prompts[0]] + [state.prompts[v + 1] for v in has_masks] | |
negative_prompts = [state.neg_prompts[0]] + [state.neg_prompts[v + 1] for v in has_masks] | |
mask_strengths = [1] + [state.mask_strengths[v] for v in has_masks] | |
mask_stds = [0] + [state.mask_stds[v] for v in has_masks] | |
prompt_strengths = [1] + [state.prompt_strengths[v] for v in has_masks] | |
prompts, negative_prompts = preprocess_prompts( | |
prompts, negative_prompts, style_name=state.style_name, quality_name=state.quality_name) | |
image = generate( | |
state, | |
prompts, | |
negative_prompts, | |
masks=masks, | |
mask_strengths=mask_strengths, | |
mask_stds=mask_stds, | |
prompt_strengths=prompt_strengths, | |
background=background.convert('RGB'), | |
background_prompt=state.prompts[0], | |
background_negative_prompt=state.neg_prompts[0], | |
height=opt.height, | |
width=opt.width, | |
bootstrap_steps=opt.bootstrap_steps, | |
guidance_scale=0, | |
) | |
return image | |
### Load examples | |
root = pathlib.Path(__file__).parent | |
print(root) | |
example_root = os.path.join(root, 'examples') | |
example_images = glob.glob(os.path.join(example_root, '*.png')) | |
example_images = [Image.open(i) for i in example_images] | |
with open(os.path.join(example_root, 'prompt_background_advanced.txt')) as f: | |
prompts_background = [l.strip() for l in f.readlines() if l.strip() != ''] | |
with open(os.path.join(example_root, 'prompt_girl.txt')) as f: | |
prompts_girl = [l.strip() for l in f.readlines() if l.strip() != ''] | |
with open(os.path.join(example_root, 'prompt_boy.txt')) as f: | |
prompts_boy = [l.strip() for l in f.readlines() if l.strip() != ''] | |
with open(os.path.join(example_root, 'prompt_props.txt')) as f: | |
prompts_props = [l.strip() for l in f.readlines() if l.strip() != ''] | |
prompts_props = {l.split(',')[0].strip(): ','.join(l.split(',')[1:]).strip() for l in prompts_props} | |
prompt_background = lambda: random.choice(prompts_background) | |
prompt_girl = lambda: random.choice(prompts_girl) | |
prompt_boy = lambda: random.choice(prompts_boy) | |
prompt_props = lambda: np.random.choice(list(prompts_props.keys()), size=(opt.max_palettes - 2), replace=False).tolist() | |
### Main application | |
css = f""" | |
#run-button {{ | |
font-size: 30pt; | |
background-image: linear-gradient(to right, #4338ca 0%, #26a0da 51%, #4338ca 100%); | |
margin: 0; | |
padding: 15px 45px; | |
text-align: center; | |
text-transform: uppercase; | |
transition: 0.5s; | |
background-size: 200% auto; | |
color: white; | |
box-shadow: 0 0 20px #eee; | |
border-radius: 10px; | |
display: block; | |
background-position: right center; | |
}} | |
#run-button:hover {{ | |
background-position: left center; | |
color: #fff; | |
text-decoration: none; | |
}} | |
#semantic-palette {{ | |
border-style: solid; | |
border-width: 0.2em; | |
border-color: #eee; | |
}} | |
#semantic-palette:hover {{ | |
box-shadow: 0 0 20px #eee; | |
}} | |
#output-screen {{ | |
width: 100%; | |
aspect-ratio: {opt.width} / {opt.height}; | |
}} | |
.layer-wrap {{ | |
display: none; | |
}} | |
#share-btn {{ | |
color: #ffffff;font-weight: 600; | |
background-color: #000000; | |
font-family: 'IBM Plex Sans', sans-serif; | |
border-radius: 9999px !important; | |
}} | |
#share-btn:hover {{ | |
color: #ffffff;font-weight: 600; | |
background-color: #000000; | |
font-family: 'IBM Plex Sans', sans-serif; | |
border-radius: 9999px !important; | |
box-shadow: 0 0 20px #eee; | |
}} | |
""" | |
for i in range(opt.max_palettes + 1): | |
css = css + f""" | |
.secondary#semantic-palette-{i} {{ | |
background-image: linear-gradient(to right, #374151 0%, #374151 71%, {opt.colors[i]} 100%); | |
color: white; | |
}} | |
.primary#semantic-palette-{i} {{ | |
background-image: linear-gradient(to right, #4338ca 0%, #4338ca 71%, {opt.colors[i]} 100%); | |
color: white; | |
}} | |
""" | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
iface = argparse.Namespace() | |
def _define_state(): | |
state = argparse.Namespace() | |
# Cursor. | |
state.current_palette = 0 # 0: Background; 1,2,3,...: Layers | |
state.model_id = list(model_dict.keys())[0] | |
state.style_name = '(None)' | |
state.quality_name = 'Standard v3.1' | |
# State variables (one-hot). | |
state.active_palettes = 1 | |
# Front-end initialized to the default values. | |
prompt_props_ = prompt_props() | |
state.prompt_names = [ | |
'π Background', | |
'π§ Girl', | |
'π¦ Boy', | |
] + prompt_props_ + ['π¨ New Palette' for _ in range(opt.max_palettes - 5)] | |
state.prompts = [ | |
prompt_background(), | |
prompt_girl(), | |
prompt_boy(), | |
] + [prompts_props[k] for k in prompt_props_] + ['' for _ in range(opt.max_palettes - 5)] | |
state.neg_prompts = [ | |
opt.default_negative_prompt | |
+ (', humans, humans, humans' if i == 0 else '') | |
for i in range(opt.max_palettes + 1) | |
] | |
state.prompt_strengths = [opt.default_prompt_strength for _ in range(opt.max_palettes)] | |
state.mask_strengths = [opt.default_mask_strength for _ in range(opt.max_palettes)] | |
state.mask_stds = [opt.default_mask_std for _ in range(opt.max_palettes)] | |
state.seed = opt.seed | |
return state | |
state = gr.State(value=_define_state) | |
### Demo user interface | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<div> | |
<h1>π₯π§ Semantic Palette <b>X</b> Animagine XL 3.1 π¨π₯</h1> | |
<h5 style="margin: 0;">powered by</h5> | |
<h3 style="margin-bottom: 0;"><a href="https://github.com/ironjr/StreamMultiDiffusion">StreamMultiDiffusion: Real-Time Interactive Generation with Region-Based Semantic Control</a> <em>and</em></h3> | |
<h3 style="margin-top: 0;"><a href="https://huggingface.co/cagliostrolab/animagine-xl-3.1">Animagine XL 3.1</a> by <a href="https://cagliostrolab.net/">Cagliostro Research Lab</a></h3> | |
<h5 style="margin: 0;">If you β€οΈ our project, please visit our Github and give us a π!</h5> | |
</br> | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href='https://arxiv.org/abs/2403.09055'> | |
<img src="https://img.shields.io/badge/arXiv-2403.09055-red"> | |
</a> | |
| |
<a href='https://jaerinlee.com/research/StreamMultiDiffusion'> | |
<img src='https://img.shields.io/badge/Project-Page-green' alt='Project Page'> | |
</a> | |
| |
<a href='https://github.com/ironjr/StreamMultiDiffusion'> | |
<img src='https://img.shields.io/github/stars/ironjr/StreamMultiDiffusion?label=Github&color=blue'> | |
</a> | |
| |
<a href='https://twitter.com/_ironjr_'> | |
<img src='https://img.shields.io/twitter/url?label=_ironjr_&url=https%3A%2F%2Ftwitter.com%2F_ironjr_'> | |
</a> | |
| |
<a href='https://github.com/ironjr/StreamMultiDiffusion/blob/main/LICENSE'> | |
<img src='https://img.shields.io/badge/license-MIT-lightgrey'> | |
</a> | |
| |
<a href='https://huggingface.co/papers/2403.09055'> | |
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Paper-StreamMultiDiffusion-yellow'> | |
</a> | |
| |
<a href='https://huggingface.co/cagliostrolab/animagine-xl-3.1'> | |
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Model-AnimagineXL3.1-yellow'> | |
</a> | |
| |
<a href='https://huggingface.co/spaces/ironjr/SemanticPalette'> | |
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Demo-v1.5-yellow'> | |
</a> | |
| |
<a href='https://huggingface.co/spaces/ironjr/StreamMultiDiffusion'> | |
<img src='https://img.shields.io/badge/%F0%9F%A4%97%20Demo-StreamMultiDiffusion-yellow'> | |
</a> | |
</div> | |
</div> | |
</div> | |
<div> | |
</br> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
iface.image_slot = gr.Image( | |
interactive=False, | |
show_label=False, | |
show_download_button=True, | |
type='pil', | |
label='Generated Result', | |
elem_id='output-screen', | |
value=lambda: random.choice(example_images), | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(elem_id='semantic-palette'): | |
gr.HTML( | |
""" | |
<div style="justify-content: center; align-items: center;"> | |
<br/> | |
<h3 style="margin: 0; text-align: center;"><b>π§ Semantic Palette π¨</b></h3> | |
<br/> | |
</div> | |
""" | |
) | |
iface.btn_semantics = [gr.Button( | |
value=state.value.prompt_names[0], | |
variant='primary', | |
elem_id='semantic-palette-0', | |
)] | |
for i in range(opt.max_palettes): | |
iface.btn_semantics.append(gr.Button( | |
value=state.value.prompt_names[i + 1], | |
variant='secondary', | |
visible=(i < state.value.active_palettes), | |
elem_id=f'semantic-palette-{i + 1}' | |
)) | |
iface.btn_add_palette = gr.Button( | |
value='Create New Semantic Brush', | |
variant='primary', | |
) | |
with gr.Accordion(label='Import/Export Semantic Palette', open=False): | |
iface.tbox_state_import = gr.Textbox(label='Put Palette JSON Here To Import') | |
iface.json_state_export = gr.JSON(label='Exported Palette') | |
iface.btn_export_state = gr.Button("Export Palette β‘οΈ JSON", variant='primary') | |
iface.btn_import_state = gr.Button("Import JSON β‘οΈ Palette", variant='secondary') | |
gr.HTML( | |
""" | |
<div> | |
</br> | |
</div> | |
<div style="justify-content: center; align-items: center;"> | |
<h3 style="margin: 0; text-align: center;"><b>βUsageβ</b></h3> | |
</br> | |
<div style="justify-content: center; align-items: left; text-align: left;"> | |
<p>1-1. Type in the background prompt. Background is not required if you paint the whole drawpad.</p> | |
<p>1-2. (Optional: <em><b>Inpainting mode</b></em>) Uploading a background image will make the app into inpainting mode. Removing the image returns to the creation mode. In the inpainting mode, increasing the <em>Mask Blur STD</em> > 8 for every colored palette is recommended for smooth boundaries.</p> | |
<p>2. Select a semantic brush by clicking onto one in the <b>Semantic Palette</b> above. Edit prompt for the semantic brush.</p> | |
<p>2-1. If you are willing to draw more diverse images, try <b>Create New Semantic Brush</b>.</p> | |
<p>3. Start drawing in the <b>Semantic Drawpad</b> tab. The brush color is directly linked to the semantic brushes.</p> | |
<p>4. Click [<b>GENERATE!</b>] button to create your (large-scale) artwork!</p> | |
</div> | |
</div> | |
""" | |
) | |
gr.HTML( | |
""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<h5 style="margin: 0;"><b>... or run in your own π€ space!</b></h5> | |
</div> | |
""" | |
) | |
gr.DuplicateButton() | |
with gr.Column(scale=4): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
iface.ctrl_semantic = gr.ImageEditor( | |
image_mode='RGBA', | |
sources=['upload', 'clipboard', 'webcam'], | |
transforms=['crop'], | |
crop_size=(opt.width, opt.height), | |
brush=gr.Brush( | |
colors=opt.colors[1:], | |
color_mode="fixed", | |
), | |
type='pil', | |
label='Semantic Drawpad', | |
elem_id='drawpad', | |
) | |
with gr.Column(scale=1): | |
iface.btn_generate = gr.Button( | |
value='Generate!', | |
variant='primary', | |
# scale=1, | |
elem_id='run-button' | |
) | |
iface.btn_share = gr.Button('π€ Share with Community', elem_id='share-btn') | |
iface.model_select = gr.Radio( | |
list(model_dict.keys()), | |
label='Stable Diffusion Checkpoint', | |
info='Choose your favorite style.', | |
value=state.value.model_id, | |
) | |
with gr.Accordion(label='Prompt Engineering', open=True): | |
iface.quality_select = gr.Dropdown( | |
label='Quality Presets', | |
interactive=True, | |
choices=list(_quality_dict.keys()), | |
value='Standard v3.1', | |
) | |
iface.style_select = gr.Radio( | |
label='Style Preset', | |
container=True, | |
interactive=True, | |
choices=list(_style_dict.keys()), | |
value='(None)', | |
) | |
with gr.Group(elem_id='control-panel'): | |
with gr.Row(): | |
iface.tbox_prompt = gr.Textbox( | |
label='Edit Prompt for Background', | |
info='What do you want to draw?', | |
value=state.value.prompts[0], | |
placeholder=lambda: random.choice(prompt_suggestions), | |
scale=2, | |
) | |
iface.tbox_name = gr.Textbox( | |
label='Edit Brush Name', | |
info='Just for your convenience.', | |
value=state.value.prompt_names[0], | |
placeholder='π Background', | |
scale=1, | |
) | |
with gr.Row(): | |
iface.tbox_neg_prompt = gr.Textbox( | |
label='Edit Negative Prompt for Background', | |
info='Add unwanted objects for this semantic brush.', | |
value=opt.default_negative_prompt, | |
scale=2, | |
) | |
iface.slider_strength = gr.Slider( | |
label='Prompt Strength', | |
info='Blends fg & bg in the prompt level, >0.8 Preferred.', | |
minimum=0.5, | |
maximum=1.0, | |
value=opt.default_prompt_strength, | |
scale=1, | |
) | |
with gr.Row(): | |
iface.slider_alpha = gr.Slider( | |
label='Mask Alpha', | |
info='Factor multiplied to the mask before quantization. Extremely sensitive, >0.98 Preferred.', | |
minimum=0.5, | |
maximum=1.0, | |
value=opt.default_mask_strength, | |
) | |
iface.slider_std = gr.Slider( | |
label='Mask Blur STD', | |
info='Blends fg & bg in the latent level, 0 for generation, 8-32 for inpainting.', | |
minimum=0.0001, | |
maximum=100.0, | |
value=opt.default_mask_std, | |
) | |
iface.slider_seed = gr.Slider( | |
label='Seed', | |
info='The global seed.', | |
minimum=-1, | |
maximum=2147483647, | |
step=1, | |
value=opt.seed, | |
) | |
### Attach event handlers | |
for idx, btn in enumerate(iface.btn_semantics): | |
btn.click( | |
fn=partial(select_palette, idx=idx), | |
inputs=[state, btn], | |
outputs=[state] + iface.btn_semantics + [ | |
iface.tbox_name, | |
iface.tbox_prompt, | |
iface.tbox_neg_prompt, | |
iface.slider_alpha, | |
iface.slider_strength, | |
iface.slider_std, | |
], | |
api_name=f'select_palette_{idx}', | |
) | |
iface.btn_add_palette.click( | |
fn=add_palette, | |
inputs=state, | |
outputs=[state, iface.btn_add_palette] + iface.btn_semantics[1:], | |
api_name='create_new', | |
) | |
iface.btn_generate.click( | |
fn=run, | |
inputs=[state, iface.ctrl_semantic], | |
outputs=iface.image_slot, | |
api_name='run', | |
) | |
iface.slider_alpha.input( | |
fn=change_mask_strength, | |
inputs=[state, iface.slider_alpha], | |
outputs=state, | |
api_name='change_alpha', | |
) | |
iface.slider_std.input( | |
fn=change_std, | |
inputs=[state, iface.slider_std], | |
outputs=state, | |
api_name='change_std', | |
) | |
iface.slider_strength.input( | |
fn=change_prompt_strength, | |
inputs=[state, iface.slider_strength], | |
outputs=state, | |
api_name='change_strength', | |
) | |
iface.slider_seed.input( | |
fn=reset_seed, | |
inputs=[state, iface.slider_seed], | |
outputs=state, | |
api_name='reset_seed', | |
) | |
iface.tbox_name.input( | |
fn=rename_prompt, | |
inputs=[state, iface.tbox_name], | |
outputs=[state] + iface.btn_semantics, | |
api_name='prompt_rename', | |
) | |
iface.tbox_prompt.input( | |
fn=change_prompt, | |
inputs=[state, iface.tbox_prompt], | |
outputs=state, | |
api_name='prompt_edit', | |
) | |
iface.tbox_neg_prompt.input( | |
fn=change_neg_prompt, | |
inputs=[state, iface.tbox_neg_prompt], | |
outputs=state, | |
api_name='neg_prompt_edit', | |
) | |
iface.model_select.change( | |
fn=select_model, | |
inputs=[state, iface.model_select], | |
outputs=state, | |
api_name='model_select', | |
) | |
iface.style_select.change( | |
fn=select_style, | |
inputs=[state, iface.style_select], | |
outputs=state, | |
api_name='style_select', | |
) | |
iface.quality_select.change( | |
fn=select_quality, | |
inputs=[state, iface.quality_select], | |
outputs=state, | |
api_name='quality_select', | |
) | |
iface.btn_share.click(None, [], [], js=share_js) | |
iface.btn_export_state.click(lambda x: vars(x), state, iface.json_state_export) | |
iface.btn_import_state.click(import_state, [state, iface.tbox_state_import], [ | |
state, | |
*iface.btn_semantics, | |
iface.model_select, | |
iface.style_select, | |
iface.quality_select, | |
iface.tbox_prompt, | |
iface.tbox_name, | |
iface.tbox_neg_prompt, | |
iface.slider_strength, | |
iface.slider_alpha, | |
iface.slider_std, | |
iface.slider_seed, | |
]) | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p>We thank <a href="https://cagliostrolab.net/">Cagliostro Research Lab</a> for their permission to use <a href="https://huggingface.co/cagliostrolab/animagine-xl-3.1">Animagine XL 3.1</a> model under academic purpose. | |
Note that the MIT license only applies to StreamMultiDiffusion and Semantic Palette demo app, but not Animagine XL 3.1 model, which is distributed under <a href="https://freedevproject.org/faipl-1.0-sd/">Fair AI Public License 1.0-SD</a>. | |
</p> | |
</div> | |
""" | |
) | |
if __name__ == '__main__': | |
demo.queue(max_size=20).launch() |