|
from PIL import Image |
|
import numpy as np |
|
import torch, os |
|
import sam2point.utils as utils |
|
from sam2.build_sam import build_sam2_video_predictor, build_sam2 |
|
from sam2.sam2_image_predictor import SAM2ImagePredictor |
|
|
|
CHECKPOINT = "./checkpoints/sam2_hiera_large.pt" |
|
MODELCFG = "sam2_hiera_l.yaml" |
|
RESOLUTION = 256 |
|
|
|
def grid_to_frames(grid, foldpath, args): |
|
if not utils.build_fold(foldpath): |
|
utils.visualize_per_frame(grid, foldpath=foldpath, resolution=RESOLUTION, args=args) |
|
|
|
|
|
frame_names = [ |
|
p for p in os.listdir(foldpath) |
|
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"] |
|
] |
|
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) |
|
|
|
for i in range(len(frame_names)): |
|
frame_names[i] = os.path.join(foldpath, frame_names[i]) |
|
|
|
return frame_names |
|
|
|
|
|
def segment_point(frame_paths, point): |
|
sam2_checkpoint = CHECKPOINT |
|
model_cfg = MODELCFG |
|
|
|
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) |
|
inference_state = predictor.init_state(frame_paths=frame_paths) |
|
|
|
predictor.reset_state(inference_state) |
|
|
|
ann_frame_idx = 0 |
|
ann_obj_id = 1 |
|
|
|
|
|
points = np.array([point], dtype=np.float32) |
|
|
|
labels = np.array([1], np.int32) |
|
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box( |
|
inference_state=inference_state, |
|
frame_idx=ann_frame_idx, |
|
obj_id=ann_obj_id, |
|
points=points, |
|
labels=labels, |
|
) |
|
|
|
|
|
video_segments = {} |
|
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): |
|
video_segments[out_frame_idx] = { |
|
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() |
|
for i, out_obj_id in enumerate(out_obj_ids) |
|
} |
|
|
|
masks = [] |
|
for out_frame_idx in range(0, len(frame_paths)): |
|
for out_obj_id, out_mask in video_segments[out_frame_idx].items(): |
|
out_mask = torch.from_numpy(out_mask * 1.0) |
|
masks.append(out_mask) |
|
masks = torch.cat(masks, dim=0) |
|
return masks |
|
|
|
|
|
|
|
def segment_box(frame_paths, box, n_frame): |
|
sam2_checkpoint = CHECKPOINT |
|
model_cfg = MODELCFG |
|
|
|
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) |
|
inference_state = predictor.init_state(frame_paths=frame_paths) |
|
|
|
predictor.reset_state(inference_state) |
|
|
|
for i in range(n_frame): |
|
|
|
ann_frame_idx = i |
|
ann_obj_id = 1 |
|
|
|
|
|
box = np.array(box, dtype=np.float32) |
|
|
|
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box( |
|
inference_state=inference_state, |
|
frame_idx=ann_frame_idx, |
|
obj_id=ann_obj_id, |
|
box=box, |
|
) |
|
|
|
|
|
video_segments = {} |
|
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): |
|
video_segments[out_frame_idx] = { |
|
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() |
|
for i, out_obj_id in enumerate(out_obj_ids) |
|
} |
|
|
|
masks = [] |
|
for out_frame_idx in range(0, len(frame_paths)): |
|
for out_obj_id, out_mask in video_segments[out_frame_idx].items(): |
|
out_mask = torch.from_numpy(out_mask * 1.0) |
|
masks.append(out_mask) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
return masks |
|
|
|
|
|
def segment_mask(frame_paths, point): |
|
|
|
sam2_checkpoint = CHECKPOINT |
|
model_cfg = MODELCFG |
|
|
|
|
|
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint) |
|
image_predictor = SAM2ImagePredictor(sam2_image_model) |
|
image = Image.open(frame_paths[0]) |
|
image_predictor.set_image(np.array(image.convert("RGB"))) |
|
|
|
point = np.array([point], dtype=np.float32) |
|
label = np.array([1], np.int32) |
|
masks, scores, logits = image_predictor.predict(point_coords=point, point_labels=label, multimask_output=True) |
|
sorted_ind = np.argsort(scores)[::-1] |
|
masks = masks[sorted_ind] |
|
|
|
|
|
|
|
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) |
|
inference_state = video_predictor.init_state(frame_paths=frame_paths) |
|
|
|
video_predictor.reset_state(inference_state) |
|
|
|
ann_frame_idx = 0 |
|
ann_obj_id = 1 |
|
|
|
mask_prompt = masks[0] |
|
video_predictor.add_new_mask(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, mask=mask_prompt) |
|
|
|
video_segments = {} |
|
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state): |
|
video_segments[out_frame_idx] = { |
|
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() |
|
for i, out_obj_id in enumerate(out_obj_ids) |
|
} |
|
|
|
masks = [] |
|
for out_frame_idx in range(0, len(frame_paths)): |
|
for out_obj_id, out_mask in video_segments[out_frame_idx].items(): |
|
out_mask = torch.from_numpy(out_mask * 1.0) |
|
masks.append(out_mask) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
return masks, mask_prompt |
|
|
|
def seg_point(locs, feats, prompt, args): |
|
num_voxels = locs.max().astype(int) |
|
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3)) |
|
|
|
|
|
locs = locs.astype(int) |
|
for v in range(locs.shape[0]): |
|
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v] |
|
|
|
X, Y, Z, _ = grid.shape |
|
grid = torch.from_numpy(grid) |
|
|
|
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)] |
|
name = '_'.join(name_list) |
|
os.makedirs(name + 'frames', exist_ok=True) |
|
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z" |
|
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1) |
|
|
|
a0_frame_paths = grid_to_frames(grid0, axis0, args) |
|
a1_frame_paths = grid_to_frames(grid1, axis1, args) |
|
a2_frame_paths = grid_to_frames(grid2, axis2, args) |
|
|
|
voxel_coords = np.array(prompt) / args.voxel_size + 2 |
|
voxel_coords = voxel_coords.astype(int) |
|
|
|
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X |
|
pixel = pixel.astype(int) |
|
|
|
idx = args.prompt_idx |
|
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 0]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:] |
|
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 1]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:] |
|
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 2]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:] |
|
|
|
a0_mask_0 = torch.flip(segment_point(a0_paths_0, [pixel[idx, 2], pixel[idx, 1]]), dims=[0]) |
|
a0_mask_1 = segment_point(a0_paths_1, [pixel[idx, 2], pixel[idx, 1]])[1:, :, :] |
|
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0) |
|
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a1_mask_0 = torch.flip(segment_point(a1_paths_0, [pixel[idx, 2], pixel[idx, 0]]), dims=[0]) |
|
a1_mask_1 = segment_point(a1_paths_1, [pixel[idx, 2], pixel[idx, 0]])[1:, :, :] |
|
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0) |
|
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a2_mask_0 = torch.flip(segment_point(a2_paths_0, [pixel[idx, 1], pixel[idx, 0]]), dims=[0]) |
|
a2_mask_1 = segment_point(a2_paths_1, [pixel[idx, 1], pixel[idx, 0]])[1:, :, :] |
|
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0) |
|
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1) |
|
|
|
|
|
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1) |
|
mask = (mask > 1.5).squeeze()[2:, 2:, 2:] |
|
return mask |
|
|
|
def seg_box(locs, feats, prompt, args): |
|
num_voxels = locs.max().astype(int) |
|
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3)) |
|
|
|
|
|
locs = locs.astype(int) |
|
for v in range(locs.shape[0]): |
|
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v] |
|
|
|
X, Y, Z, _ = grid.shape |
|
grid = torch.from_numpy(grid) |
|
|
|
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)] |
|
name = '_'.join(name_list) |
|
os.makedirs(name + 'frames', exist_ok=True) |
|
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z" |
|
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1) |
|
|
|
a0_frame_paths = grid_to_frames(grid0, axis0, args) |
|
a1_frame_paths = grid_to_frames(grid1, axis1, args) |
|
a2_frame_paths = grid_to_frames(grid2, axis2, args) |
|
|
|
point_prompts = np.array(prompt) |
|
voxel_coords = point_prompts / args.voxel_size + 2 |
|
voxel_coords = voxel_coords.astype(int) |
|
|
|
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X |
|
pixel = pixel.astype(int) |
|
|
|
idx = args.prompt_idx |
|
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 3]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:] |
|
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 4]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:] |
|
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 5]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:] |
|
|
|
frame_num0 = voxel_coords[idx, 3] - voxel_coords[idx, 0] |
|
end0, start0 = len(a0_paths_0) - int(frame_num0 / 2), int(frame_num0 / 2) |
|
a0_mask_0 = torch.flip(segment_box(a0_paths_0, [pixel[idx, 2], pixel[idx, 1], pixel[idx, 5], pixel[idx, 4]], frame_num0), dims=[0])[:end0] |
|
a0_mask_1 = segment_box(a0_paths_1, [pixel[idx, 2], pixel[idx, 1], pixel[idx, 5], pixel[idx, 4]], frame_num0)[start0:] |
|
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0) |
|
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
frame_num1 = voxel_coords[idx, 4] - voxel_coords[idx, 1] |
|
end1, start1 = len(a1_paths_0) - int(frame_num1 / 2), int(frame_num1 / 2) |
|
a1_mask_0 = torch.flip(segment_box(a1_paths_0, [pixel[idx, 2], pixel[idx, 0], pixel[idx, 5], pixel[idx, 3]], frame_num1), dims=[0])[:end1] |
|
a1_mask_1 = segment_box(a1_paths_1, [pixel[idx, 2], pixel[idx, 0], pixel[idx, 5], pixel[idx, 3]], frame_num1)[start1:] |
|
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0) |
|
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
frame_num2 = voxel_coords[idx, 5] - voxel_coords[idx, 2] |
|
end2, start2 = len(a2_paths_0) - int(frame_num2 / 2), int(frame_num2 / 2) |
|
a2_mask_0 = torch.flip(segment_box(a2_paths_0, [pixel[idx, 1], pixel[idx, 0], pixel[idx, 4], pixel[idx, 3]], frame_num2), dims=[0])[:end2] |
|
a2_mask_1 = segment_box(a2_paths_1, [pixel[idx, 1], pixel[idx, 0], pixel[idx, 4], pixel[idx, 3]], frame_num2)[start2:] |
|
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0) |
|
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1) |
|
|
|
|
|
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1) |
|
mask = (mask > 1.5).squeeze()[2:, 2:, 2:] |
|
|
|
return mask |
|
|
|
def seg_mask(locs, feats, prompt, args): |
|
num_voxels = locs.max().astype(int) |
|
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3)) |
|
|
|
|
|
locs = locs.astype(int) |
|
for v in range(locs.shape[0]): |
|
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v] |
|
|
|
X, Y, Z, _ = grid.shape |
|
grid = torch.from_numpy(grid) |
|
|
|
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)] |
|
name = '_'.join(name_list) |
|
os.makedirs(name + 'frames', exist_ok=True) |
|
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z" |
|
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1) |
|
|
|
a0_frame_paths = grid_to_frames(grid0, axis0, args) |
|
a1_frame_paths = grid_to_frames(grid1, axis1, args) |
|
a2_frame_paths = grid_to_frames(grid2, axis2, args) |
|
|
|
point_prompts = np.array(prompt) |
|
voxel_coords = point_prompts / args.voxel_size + 2 |
|
voxel_coords = voxel_coords.astype(int) |
|
|
|
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X |
|
pixel = pixel.astype(int) |
|
|
|
idx = args.prompt_idx |
|
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 0]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:] |
|
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 1]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:] |
|
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 2]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:] |
|
|
|
a0_mask_0, a0_prompt = segment_mask(a0_paths_0, [pixel[idx, 2], pixel[idx, 1]]) |
|
a0_mask_0 = torch.flip(a0_mask_0, dims=[0]) |
|
a0_mask_1, _ = segment_mask(a0_paths_1, [pixel[idx, 2], pixel[idx, 1]]) |
|
a0_mask_1 = a0_mask_1[1:, :, :] |
|
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0) |
|
a0_prompt_mask = a0_mask * 0 |
|
a0_prompt_mask[voxel_coords[idx, 0]] = torch.from_numpy(a0_prompt) |
|
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
a0_prompt_mask = torch.nn.functional.interpolate(a0_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a1_mask_0, a1_prompt = segment_mask(a1_paths_0, [pixel[idx, 2], pixel[idx, 0]]) |
|
a1_mask_0 = torch.flip(a1_mask_0, dims=[0]) |
|
a1_mask_1, _ = segment_mask(a1_paths_1, [pixel[idx, 2], pixel[idx, 0]]) |
|
a1_mask_1 = a1_mask_1[1:, :, :] |
|
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0) |
|
a1_prompt_mask = a1_mask * 0 |
|
a1_prompt_mask[voxel_coords[idx, 1]] = torch.from_numpy(a1_prompt) |
|
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
a1_prompt_mask = torch.nn.functional.interpolate(a1_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a2_mask_0, a2_prompt = segment_mask(a2_paths_0, [pixel[idx, 1], pixel[idx, 0]]) |
|
a2_mask_0 = torch.flip(a2_mask_0, dims=[0]) |
|
a2_mask_1, _ = segment_mask(a2_paths_1, [pixel[idx, 1], pixel[idx, 0]]) |
|
a2_mask_1 = a2_mask_1[1:, :, :] |
|
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0) |
|
a2_prompt_mask = a2_mask * 0 |
|
a2_prompt_mask[voxel_coords[idx, 2]] = torch.from_numpy(a2_prompt) |
|
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
a2_prompt_mask = torch.nn.functional.interpolate(a2_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0) |
|
|
|
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1) |
|
utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION, name=name, args=args) |
|
a0_prompt_mask, a1_prompt_mask, a2_prompt_mask = a0_prompt_mask.transpose(0, 1), a1_prompt_mask.transpose(0, 1), a2_prompt_mask.transpose(0, 1) |
|
|
|
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1) |
|
mask = (mask > 1.5).squeeze()[2:, 2:, 2:] |
|
|
|
prompt_mask = a0_prompt_mask.permute(0, 2, 3, 1) + a1_prompt_mask.permute(2, 0, 3, 1) + a2_prompt_mask.permute(2, 3, 0, 1) |
|
prompt_mask = (prompt_mask > 0.5).squeeze()[2:, 2:, 2:] |
|
|
|
return mask, prompt_mask |