DRv2 / Model /AttDes /validate_local_gennerate.py
Zhonathon's picture
update all file v1
aa7fb02
import argparse
import datetime
import json
import random
import time
import math
import os
import numpy as np
from pathlib import Path
import torch
from nltk.translate import bleu_score
import dataset.data_loader
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader, DistributedSampler
import torchvision.transforms as transforms
from models import prefixLM, tokenizer
import nltk
import jieba
# from engine import train_one_epoch, validate
#
# import utils.misc as utils
from models import __init__
# from dataset import build_dataset
# from engine import train_one_epoch, validate_txt
from einops import rearrange
from pytorch_pretrained_bert.tokenization import BertTokenizer
def get_args_parser():
parser = argparse.ArgumentParser('Set parser', add_help=False)
parser.add_argument('--device', default='cuda')
parser.add_argument('--gpu_id', default='0', type=str)
# Dataset parameters
parser.add_argument('--data_root', type=str, default=r'E:\data\Download\fur\dataset\data_for_test2.csv')
parser.add_argument('--dataset_name', type=str, default='Furniture')
parser.add_argument('--img_root', type=str, default=r'E:\data\pictures')
parser.add_argument('--output_dir', default='./outputs/validate', help='path where to save, empty for no saving')
parser.add_argument('--seed', default=2022, type=int)
parser.add_argument('--resume', default='', help='resume for checkpoint')
parser.add_argument('--bert_model', default='bert-base-chinese', type=str)
parser.add_argument('--des_len', default=256, type=int)
parser.add_argument('--obj_len', default=8, type=int)
parser.add_argument('--tgt_len', default=35, type=int)
# Train parameters
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--optimizer', default='adamw', type=str)
parser.add_argument('--lr_scheduler', default='step', type=str)
parser.add_argument('--lr_drop', default=5, type=int)
parser.add_argument('--start_epoch', default=0, type=int)
parser.add_argument('--epochs', default=1, type=int)
# Model parameters
parser.add_argument('--AD_hidden_dim', default=256, type=int)
parser.add_argument('--d_model', default=512, type=int)
# visual_model parameters
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
return parser
def main(args):
device = torch.device(args.device)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
std=[0.1673, 0.1695, 0.1705])
the_transforms = transforms.Compose([transforms.Resize((448, 448)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
dataset_all = dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
des_len=args.des_len,
obj_len=args.obj_len,
tgt_len=args.tgt_len,
img_root=args.img_root,
transform=the_transforms)
dataloader_val = DataLoader(dataset_all,
batch_size=args.batch_size,
shuffle=False)
print("data loaded...")
Tokenizer = tokenizer.ChineseTokenizer()
PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
input_resolution=448,
patch_size=16,
num_text_tokens=20000,
txt_seq_len=10000,
heads=4,
enc_depth=8,
dec_depth=8,
d_ff=1024,
dropout=0.1)
model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
model.load_state_dict(torch.load('./outputs/005/checkpoint0019.pth'))
output_dir = Path(args.output_dir)
with (output_dir / "log.txt").open("a") as f:
f.write(str(args) + "\n")
print("start validate...")
start_time = time.time()
# optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=2000)
# lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
for epoch in range(args.start_epoch, args.epochs):
validate_txt(args, model, dataloader_val, device, batch_size=args.batch_size)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Validate time {}'.format(total_time_str))
def validate(img1_id, img2_id, obj, model_path):
parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
args = parser.parse_args()
device = torch.device(args.device)
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
normalize = transforms.Normalize(mean=[0.5024, 0.4993, 0.4992],
std=[0.1673, 0.1695, 0.1705])
the_transforms = transforms.Compose([transforms.Resize((448, 448)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
dataset_all = dataset.data_loader.AttDesDataset(args.data_root, args.dataset_name,
des_len=args.des_len,
obj_len=args.obj_len,
tgt_len=args.tgt_len,
img_root=args.img_root,
transform=the_transforms)
PrefixLM_configure = dict(d_model=args.d_model, des_len=args.des_len, obj_len=args.obj_len, tgt_len=args.tgt_len,
input_resolution=448,
patch_size=16,
num_text_tokens=20000,
txt_seq_len=10000,
heads=4,
enc_depth=8,
dec_depth=8,
d_ff=1024,
dropout=0.1)
time_1 = time.time()
model = prefixLM.PrefixLM(**PrefixLM_configure).to(device)
model.load_state_dict(torch.load(model_path))
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
time_2 = time.time()
print('Load model takes {}s'.format(time_2 - time_1))
out_list = []
label_txt, output1, output2, output3 = validate_one_img(model, dataset_all, img1_id, obj, device, tokenizer)
out_list.append([label_txt, output1, output2, output3])
label_txt, output1, output2, output3 = validate_one_img(model, dataset_all, img2_id, obj, device, tokenizer)
out_list.append([label_txt, output1, output2, output3])
return out_list
def validate_one_img(model, dataset_all, img_id, obj, device, tokenizer):
# print("start validate...")
start_time = time.time()
end1_time = time.time()
model.eval()
print(obj)
img_data, des, obj_data, target, img_id, obj_given = dataset_all.get_all_from_id(img_id, obj)
print(obj_given)
img_data = img_data.unsqueeze(0).to(device)
des = des.unsqueeze(0).to(device)
obj_given = obj_given.unsqueeze(0).to(device)
label = target.unsqueeze(0).to(device)
img_emed = model.ResNet(img_data)
img_emed = rearrange(img_emed, 'b c h w -> b (h w) c')
img_emed += model.img_pos_embed(img_emed)
des_embed = model.txt_embed(des)
des_embed += model.txt_pos_embed(torch.arange(model.des_len, device=device))
obj_embed = model.txt_embed(obj_given)
obj_embed = obj_embed + model.txt_pos_embed(torch.arange(model.obj_len, device=device))
tgt_txt = torch.zeros(1, 1, dtype=torch.long, device=device) + 101
tgt_txt_embed = model.txt_embed(tgt_txt)
tgt_txt_embed += model.txt_pos_embed(torch.arange(1, device=device) + model.tgt_len)
# M_005
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
sample = torch.argmax(logits, dim=-1)
value, index = logits.topk(3, dim=-1)
sample = index[0][0].unsqueeze(0)
sample_2nd = index[0][1].unsqueeze(0)
sample_3rd = index[0][2].unsqueeze(0)
tgt_txt_2nd = tgt_txt
tgt_txt_3rd = tgt_txt
cur_len = 1
while (cur_len < model.tgt_len and sample != 102): # 102 is the id of [SEP]
tgt_txt = torch.cat((tgt_txt, sample.unsqueeze(1)), dim=-1)
tgt_txt_embed = model.txt_embed(tgt_txt)
cur_len += 1
tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
# out = model.transformer(prefix, tgt_txt_embed)
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
sample = torch.argmax(logits, dim=-1)
label_txt = []
output_txt = []
obj_txt = []
for token in des[0].tolist():
if token > 103:
label_txt.append(token)
for token in tgt_txt[0].tolist():
if token > 103:
output_txt.append(token)
# for token in obj_data[0].tolist():
# if token > 103:
# obj_txt.append(token)
label_txt = tokenizer.convert_ids_to_tokens(label_txt)
label_txt = ''.join(label_txt)
# obj_txt = tokenizer.convert_ids_to_tokens(obj_txt)
output_txt = tokenizer.convert_ids_to_tokens(output_txt)
output1 = ''.join(output_txt)
# 2nd
cur_len = 1
while (cur_len < model.tgt_len and sample_2nd != 102): # 102 is the id of [SEP]
tgt_txt_2nd = torch.cat((tgt_txt_2nd, sample_2nd.unsqueeze(1)), dim=-1)
tgt_txt_embed = model.txt_embed(tgt_txt_2nd)
cur_len += 1
tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
# out = model.transformer(prefix, tgt_txt_embed)
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
# logits = logits[:, :-26]
# print(logits)
sample_2nd = torch.argmax(logits, dim=-1)
output_txt = []
for token in tgt_txt_2nd[0].tolist():
if token > 103:
output_txt.append(token)
output_txt = tokenizer.convert_ids_to_tokens(output_txt)
output2 = ''.join(output_txt)
# 3rd
cur_len = 1
while (cur_len < model.tgt_len and sample_3rd != 102): # 102 is the id of [SEP]
tgt_txt_3rd = torch.cat((tgt_txt_3rd, sample_3rd.unsqueeze(1)), dim=-1)
tgt_txt_embed = model.txt_embed(tgt_txt_3rd)
cur_len += 1
tgt_txt_embed += model.txt_pos_embed(torch.arange(cur_len, device=device))
# out = model.transformer(prefix, tgt_txt_embed)
out = model.ModelOne(q=obj_embed, k=img_emed, v=img_emed,
tgt_embeded=tgt_txt_embed, des_embed=des_embed, obj_embed=obj_embed, img_embed=img_emed,
tgt_mask=None)
logits = model.to_logits(out)[:, -1]
# logits = logits[:, :-26]
sample_3rd = torch.argmax(logits, dim=-1)
output_txt = []
for token in tgt_txt_3rd[0].tolist():
if token > 103:
output_txt.append(token)
output_txt = tokenizer.convert_ids_to_tokens(output_txt)
output3 = ''.join(output_txt)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(output1)
print(output2)
print(output3)
print('Validate time {}'.format(total_time_str))
return label_txt, output1, output2, output3
if __name__ == '__main__':
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# parser = argparse.ArgumentParser('AttDes training script', parents=[get_args_parser()])
# args = parser.parse_args()
# os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
# if args.output_dir:
# Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# main(args)
model_name = '005'
model_path = r'E:\data\Download\models\attribute_desciption\outputs' + '/' + model_name + '/' + 'checkpoint0019.pth'
objs = ["空间","客厅","卧室","墙面","餐厅","公寓","住宅","沙发","家具","地毯","厨房","书房","背景墙","吊灯","墙",
"卫生间","儿童","床品","装饰","壁纸","地板","窗帘","吊顶","餐椅","别墅","地面","结构","布艺","餐桌","画"]
for obj in objs:
print(obj)
out = validate('550695', '550567', obj, model_path)
sentences1 = out[0][0].replace(';', ',').split(',')
# gt = ""
#
# for i in sentences1:
# if obj in i:
# gt = i
# gt = " ".join(jieba.cut(gt))
# print(gt)
# for i in out[0]:
# i = " ".join(jieba.cut(i))
# print(i)
# print(gt)
# bleu = nltk.translate.bleu_score.sentence_bleu([i], gt)
# print(bleu)