ZeroTimo's picture
Update agent.py
400e97a verified
raw
history blame
7.57 kB
# agent.py – LangChain · LangGraph · Gemini Flash
# ================================================
"""
Abhängigkeiten (requirements.txt):
----------------------------------
langchain==0.1.*
langgraph
google-generativeai
tavily-python
wikipedia-api
pandas
openpyxl
tabulate
"""
import os, re, time, functools
from typing import Dict, Any, List
import pandas as pd
from langgraph.graph import StateGraph, START, END, MessagesState
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
from langchain.tools.python.tool import PythonAstREPLTool
# ---------------------------------------------------------------------
# 0) Optionale LangSmith-Tracing (setze ENV: LANGCHAIN_API_KEY)
# ---------------------------------------------------------------------
if os.getenv("LANGCHAIN_API_KEY"):
os.environ.setdefault("LANGCHAIN_TRACING_V2", "true")
from langchain_community.utils import configure_langsmith
configure_langsmith(project_name="gaia-agent")
# ---------------------------------------------------------------------
# 1) Helfer: Fehler-Decorator + Backoff-Wrapper
# ---------------------------------------------------------------------
def error_guard(fn):
"""Fängt Tool-Fehler ab & gibt String zurück (bricht Agent nicht ab)."""
@functools.wraps(fn)
def wrapper(*args, **kw):
try:
return fn(*args, **kw)
except Exception as e:
return f"ERROR: {e}"
return wrapper
def with_backoff(fn, tries: int = 4, delay: int = 4):
"""Synchrones Retry-Wrapper für LLM-Aufrufe."""
for t in range(tries):
try:
return fn()
except Exception as e:
if ("429" in str(e) or "RateLimit" in str(e)) and t < tries - 1:
time.sleep(delay)
delay *= 2
continue
raise
# ---------------------------------------------------------------------
# 2) Eigene Tools (CSV / Excel)
# ---------------------------------------------------------------------
@tool
@error_guard
def parse_csv(file_path: str, query: str = "") -> str:
"""Load a CSV file and (optional) run a pandas query."""
df = pd.read_csv(file_path)
if not query:
return f"Rows={len(df)}, Cols={list(df.columns)}"
try:
return df.query(query).to_markdown(index=False)
except Exception as e:
return f"ERROR query: {e}"
@tool
@error_guard
def parse_excel(file_path: str, sheet: str | int | None = None, query: str = "") -> str:
"""Load an Excel sheet (name or index) and (optional) run a pandas query."""
sheet_arg = int(sheet) if isinstance(sheet, str) and sheet.isdigit() else sheet or 0
df = pd.read_excel(file_path, sheet_name=sheet_arg)
if not query:
return f"Rows={len(df)}, Cols={list(df.columns)}"
try:
return df.query(query).to_markdown(index=False)
except Exception as e:
return f"ERROR query: {e}"
# ---------------------------------------------------------------------
# 3) Externe Search-Tools (Tavily, Wikipedia)
# ---------------------------------------------------------------------
@tool
@error_guard
def web_search(query: str, max_results: int = 5) -> str:
"""Search the web via Tavily and return markdown list of results."""
api_key = os.getenv("TAVILY_API_KEY")
hits = TavilySearchResults(max_results=max_results, api_key=api_key).invoke(query)
if not hits:
return "No results."
return "\n".join(f"{h['title']}{h['url']}" for h in hits)
@tool
@error_guard
def wiki_search(query: str, sentences: int = 3) -> str:
"""Quick Wikipedia summary."""
wrapper = WikipediaAPIWrapper(top_k_results=1, doc_content_chars_max=4000)
res = wrapper.run(query)
return "\n".join(res.split(". ")[:sentences]) if res else "No article found."
# ---------------------------------------------------------------------
# 4) Python-REPL Tool (fertig aus LangChain)
# ---------------------------------------------------------------------
python_repl = PythonAstREPLTool()
# ---------------------------------------------------------------------
# 5) LLM – Gemini Flash, an Tools gebunden
# ---------------------------------------------------------------------
gemini_llm = ChatGoogleGenerativeAI(
google_api_key=os.getenv("GOOGLE_API_KEY"),
model="gemini-2.0-flash",
temperature=0,
max_output_tokens=2048,
).bind_tools(
[web_search, wiki_search, parse_csv, parse_excel, python_repl],
return_named_tools=True,
)
# ---------------------------------------------------------------------
# 6) System-Prompt (ReAct, keine Prefixe im Final-Output!)
# ---------------------------------------------------------------------
SYSTEM_PROMPT = SystemMessage(
content=(
"You are a helpful assistant with access to Python tools.\n"
"• Think step by step.\n"
"• Call a tool when needed – reply in this JSON format:\n"
" {\"tool\": \"<tool_name>\", \"tool_input\": { ... }}\n"
"• When you have the answer, reply with the answer **only** "
"– no prefix, no explanations.\n"
"Answer format rules:\n"
" • Single number → no separators / units unless required.\n"
" • Single string → no articles/abbrev.\n"
" • List → comma + single space separated, keep required order.\n"
)
)
# ---------------------------------------------------------------------
# 7) LangGraph – Planner + Tools + Router
# ---------------------------------------------------------------------
def planner(state: MessagesState):
"""LLM-Planner – entscheidet, ob Tool nötig oder Final Answer erreicht."""
msgs = state["messages"]
if msgs[0].type != "system":
msgs = [SYSTEM_PROMPT] + msgs
resp = with_backoff(lambda: gemini_llm.invoke(msgs))
finished = (
not getattr(resp, "tool_calls", None) # keine Toolaufrufe
and "\n" not in resp.content # heuristik: kurze Endantwort
)
return {"messages": [resp], "should_end": finished}
def route(state):
return "END" if state["should_end"] else "tools"
# Tool-Knoten
TOOLS = [web_search, wiki_search, parse_csv, parse_excel, python_repl]
graph = StateGraph(MessagesState)
graph.add_node("planner", planner)
graph.add_node("tools", ToolNode(TOOLS))
graph.add_edge(START, "planner")
graph.add_conditional_edges("planner", route, {"tools": "tools", "END": END})
# compile → LangGraph-Executor
agent_executor = graph.compile(max_iterations=8)
# ---------------------------------------------------------------------
# 8) Öffentliche Klasse – wird von app.py / logic.py verwendet
# ---------------------------------------------------------------------
class GaiaAgent:
"""LangChain·LangGraph-Agent für GAIA Level 1."""
def __init__(self):
print("✅ GaiaAgent initialised (LangGraph)")
def __call__(self, task_id: str, question: str) -> str:
"""Run the agent on a single GAIA question → exact answer string."""
start_state = {"messages": [HumanMessage(content=question)]}
final_state = agent_executor.invoke(start_state)
# letze Message enthält Antwort
answer = final_state["messages"][-1].content
return answer.strip()