Sparrow / sparrow_parse /processors /table_structure_processor.py
Zana897465's picture
Upload 24 files
05e6f93 verified
raw
history blame contribute delete
9.79 kB
from rich.progress import Progress, SpinnerColumn, TextColumn
from rich import print
from transformers import AutoModelForObjectDetection
import torch
from PIL import Image
from torchvision import transforms
import os
class TableDetector(object):
_model = None # Static variable to hold the table detection model
_device = None # Static variable to hold the device information
def __init__(self):
pass
class MaxResize(object):
def __init__(self, max_size=800):
self.max_size = max_size
def __call__(self, image):
width, height = image.size
current_max_size = max(width, height)
scale = self.max_size / current_max_size
resized_image = image.resize((int(round(scale * width)), int(round(scale * height))))
return resized_image
@classmethod
def _initialize_model(cls, invoke_pipeline_step, local):
"""
Static method to initialize the table detection model if not already initialized.
"""
if cls._model is None:
# Use invoke_pipeline_step to load the model
cls._model, cls._device = invoke_pipeline_step(
lambda: cls.load_table_detection_model(),
"Loading table detection model...",
local
)
print("Table detection model initialized.")
def detect_tables(self, file_path, local=True, debug_dir=None, debug=False):
# Ensure the model is initialized using invoke_pipeline_step
self._initialize_model(self.invoke_pipeline_step, local)
# Use the static model and device
model, device = self._model, self._device
outputs, image = self.invoke_pipeline_step(
lambda: self.prepare_image(file_path, model, device),
"Preparing image for table detection...",
local
)
objects = self.invoke_pipeline_step(
lambda: self.identify_tables(model, outputs, image),
"Identifying tables in the image...",
local
)
cropped_tables = self.invoke_pipeline_step(
lambda: self.crop_tables(file_path, image, objects, debug, debug_dir),
"Cropping tables from the image...",
local
)
return cropped_tables
@staticmethod
def load_table_detection_model():
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
return model, device
def prepare_image(self, file_path, model, device):
image = Image.open(file_path).convert("RGB")
detection_transform = transforms.Compose([
self.MaxResize(800),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pixel_values = detection_transform(image).unsqueeze(0)
pixel_values = pixel_values.to(device)
with torch.no_grad():
outputs = model(pixel_values)
return outputs, image
def identify_tables(self, model, outputs, image):
id2label = model.config.id2label
id2label[len(model.config.id2label)] = "no object"
objects = self.outputs_to_objects(outputs, image.size, id2label)
return objects
def crop_tables(self, file_path, image, objects, debug, debug_dir):
tokens = []
detection_class_thresholds = {
"table": 0.5,
"table rotated": 0.5,
"no object": 10
}
crop_padding = 30
tables_crops = self.objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=crop_padding)
cropped_tables = []
if len(tables_crops) == 0:
if debug:
print("No tables detected in: ", file_path)
return None
elif len(tables_crops) > 1:
for i, table_crop in enumerate(tables_crops):
if debug:
print("Table detected in:", file_path, "-", i + 1)
cropped_table = table_crop['image'].convert("RGB")
cropped_tables.append(cropped_table)
if debug_dir:
file_name_table = self.append_filename(file_path, debug_dir, f"table_cropped_{i + 1}")
cropped_table.save(file_name_table)
else:
if debug:
print("Table detected in: ", file_path)
cropped_table = tables_crops[0]['image'].convert("RGB")
cropped_tables.append(cropped_table)
if debug_dir:
file_name_table = self.append_filename(file_path, debug_dir, "table_cropped")
cropped_table.save(file_name_table)
return cropped_tables
# for output bounding box post-processing
@staticmethod
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(self, out_bbox, size):
img_w, img_h = size
b = self.box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def outputs_to_objects(self, outputs, img_size, id2label):
m = outputs.logits.softmax(-1).max(-1)
pred_labels = list(m.indices.detach().cpu().numpy())[0]
pred_scores = list(m.values.detach().cpu().numpy())[0]
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
pred_bboxes = [elem.tolist() for elem in self.rescale_bboxes(pred_bboxes, img_size)]
objects = []
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
class_label = id2label[int(label)]
if not class_label == 'no object':
objects.append({'label': class_label, 'score': float(score),
'bbox': [float(elem) for elem in bbox]})
return objects
def objects_to_crops(self, img, tokens, objects, class_thresholds, padding=10):
"""
Process the bounding boxes produced by the table detection model into
cropped table images and cropped tokens.
"""
table_crops = []
for obj in objects:
if obj['score'] < class_thresholds[obj['label']]:
continue
cropped_table = {}
bbox = obj['bbox']
bbox = [bbox[0] - padding, bbox[1] - padding, bbox[2] + padding, bbox[3] + padding]
cropped_img = img.crop(bbox)
table_tokens = [token for token in tokens if self.iob(token['bbox'], bbox) >= 0.5]
for token in table_tokens:
token['bbox'] = [token['bbox'][0] - bbox[0],
token['bbox'][1] - bbox[1],
token['bbox'][2] - bbox[0],
token['bbox'][3] - bbox[1]]
# If table is predicted to be rotated, rotate cropped image and tokens/words:
if obj['label'] == 'table rotated':
cropped_img = cropped_img.rotate(270, expand=True)
for token in table_tokens:
bbox = token['bbox']
bbox = [cropped_img.size[0] - bbox[3] - 1,
bbox[0],
cropped_img.size[0] - bbox[1] - 1,
bbox[2]]
token['bbox'] = bbox
cropped_table['image'] = cropped_img
cropped_table['tokens'] = table_tokens
table_crops.append(cropped_table)
return table_crops
@staticmethod
def append_filename(file_path, debug_dir, word):
directory, filename = os.path.split(file_path)
name, ext = os.path.splitext(filename)
new_filename = f"{name}_{word}{ext}"
return os.path.join(debug_dir, new_filename)
@staticmethod
def iob(boxA, boxB):
# Determine the coordinates of the intersection rectangle
xA = max(boxA[0], boxB[0])
yA = max(boxA[1], boxB[1])
xB = min(boxA[2], boxB[2])
yB = min(boxA[3], boxB[3])
# Compute the area of intersection rectangle
interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
# Compute the area of both the prediction and ground-truth rectangles
boxAArea = (boxA[2] - boxA[0] + 1) * (boxA[3] - boxA[1] + 1)
boxBArea = (boxB[2] - boxB[0] + 1) * (boxB[3] - boxB[1] + 1)
# Compute the intersection over box (IoB)
iob = interArea / float(boxAArea)
return iob
@staticmethod
def invoke_pipeline_step(task_call, task_description, local):
if local:
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
transient=False,
) as progress:
progress.add_task(description=task_description, total=None)
ret = task_call()
else:
print(task_description)
ret = task_call()
return ret
if __name__ == "__main__":
table_detector = TableDetector()
# file_path = "/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/bonds_table.png"
# cropped_tables = table_detector.detect_tables(file_path, local=True, debug_dir="/Users/andrejb/Work/katana-git/sparrow/sparrow-ml/llm/data/", debug=True)
# for i, cropped_table in enumerate(cropped_tables):
# file_name_table = table_detector.append_filename(file_path, "cropped_" + str(i))
# cropped_table.save(file_name_table)