Spaces:
Runtime error
Runtime error
import os | |
import random | |
import torch | |
import cv2 | |
import re | |
import uuid | |
from PIL import Image, ImageDraw, ImageOps, ImageFont | |
import math | |
import numpy as np | |
import inspect | |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector | |
from langchain.agents.initialize import initialize_agent | |
from langchain.agents.tools import Tool | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
from langchain.llms.openai import OpenAI | |
# Grounding DINO | |
import groundingdino.datasets.transforms as T | |
from groundingdino.models import build_model | |
from groundingdino.util.slconfig import SLConfig | |
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap | |
# segment anything | |
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator | |
import cv2 | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import wget | |
#prompts | |
VISUAL_AGENT_PREFIX = """ | |
Worker Multi-Modal Agent is designed to be able to assist with | |
a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. | |
Worker Multi-Modal Agent is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. | |
Worker Multi-Modal Agent is able to process and understand large amounts of text and images. As a language model, Worker Multi-Modal Agent can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Worker Multi-Modal Agent can invoke different tools to indirectly understand pictures. When talking about images, Worker Multi-Modal Agent is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Worker Multi-Modal Agent is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Worker Multi-Modal Agent is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated. | |
Human may provide new figures to Worker Multi-Modal Agent with a description. The description helps Worker Multi-Modal Agent to understand this image, but Worker Multi-Modal Agent should use tools to finish following tasks, rather than directly imagine from the description. | |
Overall, Worker Multi-Modal Agent is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. | |
TOOLS: | |
------ | |
Worker Multi-Modal Agent has access to the following tools:""" | |
VISUAL_AGENT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: | |
``` | |
Thought: Do I need to use a tool? Yes | |
Action: the action to take, should be one of [{tool_names}] | |
Action Input: the input to the action | |
Observation: the result of the action | |
``` | |
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: | |
``` | |
Thought: Do I need to use a tool? No | |
{ai_prefix}: [your response here] | |
``` | |
""" | |
VISUAL_AGENT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist. | |
You will remember to provide the image file name loyally if it's provided in the last tool observation. | |
Begin! | |
Previous conversation history: | |
{chat_history} | |
New input: {input} | |
Since Worker Multi-Modal Agent is a text language model, Worker Multi-Modal Agent must use tools to observe images rather than imagination. | |
The thoughts and observations are only visible for Worker Multi-Modal Agent, Worker Multi-Modal Agent should remember to repeat important information in the final response for Human. | |
Thought: Do I need to use a tool? {agent_scratchpad} Let's think step by step. | |
""" | |
VISUAL_AGENT_PREFIX_CN = """Worker Multi-Modal Agent 旨在能够协助完成范围广泛的文本和视觉相关任务,从回答简单的问题到提供对广泛主题的深入解释和讨论。 Worker Multi-Modal Agent 能够根据收到的输入生成类似人类的文本,使其能够进行听起来自然的对话,并提供连贯且与手头主题相关的响应。 | |
Worker Multi-Modal Agent 能够处理和理解大量文本和图像。作为一种语言模型,Worker Multi-Modal Agent 不能直接读取图像,但它有一系列工具来完成不同的视觉任务。每张图片都会有一个文件名,格式为“image/xxx.png”,Worker Multi-Modal Agent可以调用不同的工具来间接理解图片。在谈论图片时,Worker Multi-Modal Agent 对文件名的要求非常严格,绝不会伪造不存在的文件。在使用工具生成新的图像文件时,Worker Multi-Modal Agent也知道图像可能与用户需求不一样,会使用其他视觉问答工具或描述工具来观察真实图像。 Worker Multi-Modal Agent 能够按顺序使用工具,并且忠于工具观察输出,而不是伪造图像内容和图像文件名。如果生成新图像,它将记得提供上次工具观察的文件名。 | |
Human 可能会向 Worker Multi-Modal Agent 提供带有描述的新图形。描述帮助 Worker Multi-Modal Agent 理解这个图像,但 Worker Multi-Modal Agent 应该使用工具来完成以下任务,而不是直接从描述中想象。有些工具将会返回英文描述,但你对用户的聊天应当采用中文。 | |
总的来说,Worker Multi-Modal Agent 是一个强大的可视化对话辅助工具,可以帮助处理范围广泛的任务,并提供关于范围广泛的主题的有价值的见解和信息。 | |
工具列表: | |
------ | |
Worker Multi-Modal Agent 可以使用这些工具:""" | |
VISUAL_AGENT_FORMAT_INSTRUCTIONS_CN = """用户使用中文和你进行聊天,但是工具的参数应当使用英文。如果要调用工具,你必须遵循如下格式: | |
``` | |
Thought: Do I need to use a tool? Yes | |
Action: the action to take, should be one of [{tool_names}] | |
Action Input: the input to the action | |
Observation: the result of the action | |
``` | |
当你不再需要继续调用工具,而是对观察结果进行总结回复时,你必须使用如下格式: | |
``` | |
Thought: Do I need to use a tool? No | |
{ai_prefix}: [your response here] | |
``` | |
""" | |
VISUAL_AGENT_SUFFIX_CN = """你对文件名的正确性非常严格,而且永远不会伪造不存在的文件。 | |
开始! | |
因为Worker Multi-Modal Agent是一个文本语言模型,必须使用工具去观察图片而不是依靠想象。 | |
推理想法和观察结果只对Worker Multi-Modal Agent可见,需要记得在最终回复时把重要的信息重复给用户,你只能给用户返回中文句子。我们一步一步思考。在你使用工具时,工具的参数只能是英文。 | |
聊天历史: | |
{chat_history} | |
新输入: {input} | |
Thought: Do I need to use a tool? {agent_scratchpad} | |
""" | |
os.makedirs('image', exist_ok=True) | |
def seed_everything(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
return seed | |
def prompts(name, description): | |
def decorator(func): | |
func.name = name | |
func.description = description | |
return func | |
return decorator | |
def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100): | |
new_size = new_image.size | |
old_size = old_image.size | |
easy_img = np.array(new_image) | |
gt_img_array = np.array(old_image) | |
pos_w = (new_size[0] - old_size[0]) // 2 | |
pos_h = (new_size[1] - old_size[1]) // 2 | |
kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma) | |
kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma) | |
kernel = np.multiply(kernel_h, np.transpose(kernel_w)) | |
kernel[steps:-steps, steps:-steps] = 1 | |
kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1] | |
kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)] | |
kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1] | |
kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps] | |
kernel = np.expand_dims(kernel, 2) | |
kernel = np.repeat(kernel, 3, 2) | |
weight = np.linspace(0, 1, steps) | |
top = np.expand_dims(weight, 1) | |
top = np.repeat(top, old_size[0] - 2 * steps, 1) | |
top = np.expand_dims(top, 2) | |
top = np.repeat(top, 3, 2) | |
weight = np.linspace(1, 0, steps) | |
down = np.expand_dims(weight, 1) | |
down = np.repeat(down, old_size[0] - 2 * steps, 1) | |
down = np.expand_dims(down, 2) | |
down = np.repeat(down, 3, 2) | |
weight = np.linspace(0, 1, steps) | |
left = np.expand_dims(weight, 0) | |
left = np.repeat(left, old_size[1] - 2 * steps, 0) | |
left = np.expand_dims(left, 2) | |
left = np.repeat(left, 3, 2) | |
weight = np.linspace(1, 0, steps) | |
right = np.expand_dims(weight, 0) | |
right = np.repeat(right, old_size[1] - 2 * steps, 0) | |
right = np.expand_dims(right, 2) | |
right = np.repeat(right, 3, 2) | |
kernel[:steps, steps:-steps] = top | |
kernel[-steps:, steps:-steps] = down | |
kernel[steps:-steps, :steps] = left | |
kernel[steps:-steps, -steps:] = right | |
pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] | |
gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img | |
gaussian_gt_img = gaussian_gt_img.astype(np.int64) | |
easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img | |
gaussian_img = Image.fromarray(easy_img) | |
return gaussian_img | |
def cut_dialogue_history(history_memory, keep_last_n_words=500): | |
if history_memory is None or len(history_memory) == 0: | |
return history_memory | |
tokens = history_memory.split() | |
n_tokens = len(tokens) | |
print(f"history_memory:{history_memory}, n_tokens: {n_tokens}") | |
if n_tokens < keep_last_n_words: | |
return history_memory | |
paragraphs = history_memory.split('\n') | |
last_n_tokens = n_tokens | |
while last_n_tokens >= keep_last_n_words: | |
last_n_tokens -= len(paragraphs[0].split(' ')) | |
paragraphs = paragraphs[1:] | |
return '\n' + '\n'.join(paragraphs) | |
def get_new_image_name(org_img_name, func_name="update"): | |
head_tail = os.path.split(org_img_name) | |
head = head_tail[0] | |
tail = head_tail[1] | |
name_split = tail.split('.')[0].split('_') | |
this_new_uuid = str(uuid.uuid4())[:4] | |
if len(name_split) == 1: | |
most_org_file_name = name_split[0] | |
else: | |
assert len(name_split) == 4 | |
most_org_file_name = name_split[3] | |
recent_prev_file_name = name_split[0] | |
new_file_name = f'{this_new_uuid}_{func_name}_{recent_prev_file_name}_{most_org_file_name}.png' | |
return os.path.join(head, new_file_name) | |
class InstructPix2Pix: | |
def __init__(self, device): | |
print(f"Initializing InstructPix2Pix to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", | |
safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype).to(device) | |
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) | |
def inference(self, inputs): | |
"""Change style of image.""" | |
print("===>Starting InstructPix2Pix Inference") | |
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
original_image = Image.open(image_path) | |
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pix2pix") | |
image.save(updated_image_path) | |
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Text2Image: | |
def __init__(self, device): | |
print(f"Initializing Text2Image to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", | |
torch_dtype=self.torch_dtype) | |
self.pipe.to(device) | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, text): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
prompt = text + ', ' + self.a_prompt | |
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0] | |
image.save(image_filename) | |
print( | |
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}") | |
return image_filename | |
class ImageCaptioning: | |
def __init__(self, device): | |
print(f"Initializing ImageCaptioning to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
self.model = BlipForConditionalGeneration.from_pretrained( | |
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, image_path): | |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
captions = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") | |
return captions | |
class Image2Canny: | |
def __init__(self, device): | |
print("Initializing Image2Canny") | |
self.low_threshold = 100 | |
self.high_threshold = 200 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
image = np.array(image) | |
canny = cv2.Canny(image, self.low_threshold, self.high_threshold) | |
canny = canny[:, :, None] | |
canny = np.concatenate([canny, canny, canny], axis=2) | |
canny = Image.fromarray(canny) | |
updated_image_path = get_new_image_name(inputs, func_name="edge") | |
canny.save(updated_image_path) | |
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}") | |
return updated_image_path | |
class CannyText2Image: | |
def __init__(self, device): | |
print(f"Initializing CannyText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Line: | |
def __init__(self, device): | |
print("Initializing Image2Line") | |
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
mlsd = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
mlsd.save(updated_image_path) | |
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}") | |
return updated_image_path | |
class LineText2Image: | |
def __init__(self, device): | |
print(f"Initializing LineText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Hed: | |
def __init__(self, device): | |
print("Initializing Image2Hed") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
hed = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") | |
hed.save(updated_image_path) | |
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}") | |
return updated_image_path | |
class HedText2Image: | |
def __init__(self, device): | |
print(f"Initializing HedText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="hed2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Scribble: | |
def __init__(self, device): | |
print("Initializing Image2Scribble") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
scribble = self.detector(image, scribble=True) | |
updated_image_path = get_new_image_name(inputs, func_name="scribble") | |
scribble.save(updated_image_path) | |
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}") | |
return updated_image_path | |
class ScribbleText2Image: | |
def __init__(self, device): | |
print(f"Initializing ScribbleText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Pose: | |
def __init__(self, device): | |
print("Initializing Image2Pose") | |
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
pose = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="human-pose") | |
pose.save(updated_image_path) | |
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
return updated_image_path | |
class PoseText2Image: | |
def __init__(self, device): | |
print(f"Initializing PoseText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.num_inference_steps = 20 | |
self.seed = -1 | |
self.unconditional_guidance_scale = 9.0 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pose2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class SegText2Image: | |
def __init__(self, device): | |
print(f"Initializing SegText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="segment2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Depth: | |
def __init__(self, device): | |
print("Initializing Image2Depth") | |
self.depth_estimator = pipeline('depth-estimation') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
depth = self.depth_estimator(image)['depth'] | |
depth = np.array(depth) | |
depth = depth[:, :, None] | |
depth = np.concatenate([depth, depth, depth], axis=2) | |
depth = Image.fromarray(depth) | |
updated_image_path = get_new_image_name(inputs, func_name="depth") | |
depth.save(updated_image_path) | |
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class DepthText2Image: | |
def __init__(self, device): | |
print(f"Initializing DepthText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="depth2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Normal: | |
def __init__(self, device): | |
print("Initializing Image2Normal") | |
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas") | |
self.bg_threhold = 0.4 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
original_size = image.size | |
image = self.depth_estimator(image)['predicted_depth'][0] | |
image = image.numpy() | |
image_depth = image.copy() | |
image_depth -= np.min(image_depth) | |
image_depth /= np.max(image_depth) | |
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3) | |
x[image_depth < self.bg_threhold] = 0 | |
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3) | |
y[image_depth < self.bg_threhold] = 0 | |
z = np.ones_like(x) * np.pi * 2.0 | |
image = np.stack([x, y, z], axis=2) | |
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5 | |
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
image = Image.fromarray(image) | |
image = image.resize(original_size) | |
updated_image_path = get_new_image_name(inputs, func_name="normal-map") | |
image.save(updated_image_path) | |
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class NormalText2Image: | |
def __init__(self, device): | |
print(f"Initializing NormalText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker'), | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="normal2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class VisualQuestionAnswering: | |
def __init__(self, device): | |
print(f"Initializing VisualQuestionAnswering to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.device = device | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
self.model = BlipForQuestionAnswering.from_pretrained( | |
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, inputs): | |
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
raw_image = Image.open(image_path).convert('RGB') | |
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
answer = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, " | |
f"Output Answer: {answer}") | |
return answer | |
class Segmenting: | |
def __init__(self, device): | |
print(f"Inintializing Segmentation to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.model_checkpoint_path = os.path.join("checkpoints","sam") | |
self.download_parameters() | |
self.sam = build_sam(checkpoint=self.model_checkpoint_path).to(device) | |
self.sam_predictor = SamPredictor(self.sam) | |
self.mask_generator = SamAutomaticMaskGenerator(self.sam) | |
self.saved_points = [] | |
self.saved_labels = [] | |
def download_parameters(self): | |
url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" | |
if not os.path.exists(self.model_checkpoint_path): | |
wget.download(url,out=self.model_checkpoint_path) | |
def show_mask(self, mask: np.ndarray,image: np.ndarray, | |
random_color: bool = False, transparency=1) -> np.ndarray: | |
"""Visualize a mask on top of an image. | |
Args: | |
mask (np.ndarray): A 2D array of shape (H, W). | |
image (np.ndarray): A 3D array of shape (H, W, 3). | |
random_color (bool): Whether to use a random color for the mask. | |
Outputs: | |
np.ndarray: A 3D array of shape (H, W, 3) with the mask | |
visualized on top of the image. | |
transparenccy: the transparency of the segmentation mask | |
""" | |
if random_color: | |
color = np.concatenate([np.random.random(3)], axis=0) | |
else: | |
color = np.array([30 / 255, 144 / 255, 255 / 255]) | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) * 255 | |
image = cv2.addWeighted(image, 0.7, mask_image.astype('uint8'), transparency, 0) | |
return image | |
def show_box(self, box, ax, label): | |
x0, y0 = box[0], box[1] | |
w, h = box[2] - box[0], box[3] - box[1] | |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) | |
ax.text(x0, y0, label) | |
def get_mask_with_boxes(self, image_pil, image, boxes_filt): | |
size = image_pil.size | |
H, W = size[1], size[0] | |
for i in range(boxes_filt.size(0)): | |
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) | |
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 | |
boxes_filt[i][2:] += boxes_filt[i][:2] | |
boxes_filt = boxes_filt.cpu() | |
transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device) | |
masks, _, _ = self.sam_predictor.predict_torch( | |
point_coords = None, | |
point_labels = None, | |
boxes = transformed_boxes.to(self.device), | |
multimask_output = False, | |
) | |
return masks | |
def segment_image_with_boxes(self, image_pil, image_path, boxes_filt, pred_phrases): | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
self.sam_predictor.set_image(image) | |
masks = self.get_mask_with_boxes(image_pil, image, boxes_filt) | |
# draw output image | |
for mask in masks: | |
image = self.show_mask(mask[0].cpu().numpy(), image, random_color=True, transparency=0.3) | |
updated_image_path = get_new_image_name(image_path, func_name="segmentation") | |
new_image = Image.fromarray(image) | |
new_image.save(updated_image_path) | |
return updated_image_path | |
def set_image(self, img) -> None: | |
"""Set the image for the predictor.""" | |
with torch.cuda.amp.autocast(): | |
self.sam_predictor.set_image(img) | |
def show_points(self, coords: np.ndarray, labels: np.ndarray, | |
image: np.ndarray) -> np.ndarray: | |
"""Visualize points on top of an image. | |
Args: | |
coords (np.ndarray): A 2D array of shape (N, 2). | |
labels (np.ndarray): A 1D array of shape (N,). | |
image (np.ndarray): A 3D array of shape (H, W, 3). | |
Returns: | |
np.ndarray: A 3D array of shape (H, W, 3) with the points | |
visualized on top of the image. | |
""" | |
pos_points = coords[labels == 1] | |
neg_points = coords[labels == 0] | |
for p in pos_points: | |
image = cv2.circle( | |
image, p.astype(int), radius=3, color=(0, 255, 0), thickness=-1) | |
for p in neg_points: | |
image = cv2.circle( | |
image, p.astype(int), radius=3, color=(255, 0, 0), thickness=-1) | |
return image | |
def segment_image_with_click(self, img, is_positive: bool): | |
self.sam_predictor.set_image(img) | |
# self.saved_points.append([evt.index[0], evt.index[1]]) | |
self.saved_labels.append(1 if is_positive else 0) | |
input_point = np.array(self.saved_points) | |
input_label = np.array(self.saved_labels) | |
# Predict the mask | |
with torch.cuda.amp.autocast(): | |
masks, scores, logits = self.sam_predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
img = self.show_mask(masks[0], img, random_color=False, transparency=0.3) | |
img = self.show_points(input_point, input_label, img) | |
return img | |
def segment_image_with_coordinate(self, img, is_positive: bool, | |
coordinate: tuple): | |
''' | |
Args: | |
img (numpy.ndarray): the given image, shape: H x W x 3. | |
is_positive: whether the click is positive, if want to add mask use True else False. | |
coordinate: the position of the click | |
If the position is (x,y), means click at the x-th column and y-th row of the pixel matrix. | |
So x correspond to W, and y correspond to H. | |
Output: | |
img (PLI.Image.Image): the result image | |
result_mask (numpy.ndarray): the result mask, shape: H x W | |
Other parameters: | |
transparency (float): the transparenccy of the mask | |
to control he degree of transparency after the mask is superimposed. | |
if transparency=1, then the masked part will be completely replaced with other colors. | |
''' | |
self.sam_predictor.set_image(img) | |
self.saved_points.append([coordinate[0], coordinate[1]]) | |
self.saved_labels.append(1 if is_positive else 0) | |
input_point = np.array(self.saved_points) | |
input_label = np.array(self.saved_labels) | |
# Predict the mask | |
with torch.cuda.amp.autocast(): | |
masks, scores, logits = self.sam_predictor.predict( | |
point_coords=input_point, | |
point_labels=input_label, | |
multimask_output=False, | |
) | |
img = self.show_mask(masks[0], img, random_color=False, transparency=0.3) | |
img = self.show_points(input_point, input_label, img) | |
img = Image.fromarray(img) | |
result_mask = masks[0] | |
return img, result_mask | |
def inference_all(self,image_path): | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
masks = self.mask_generator.generate(image) | |
plt.figure(figsize=(20,20)) | |
plt.imshow(image) | |
if len(masks) == 0: | |
return | |
sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True) | |
ax = plt.gca() | |
ax.set_autoscale_on(False) | |
for ann in sorted_anns: | |
m = ann['segmentation'] | |
img = np.ones((m.shape[0], m.shape[1], 3)) | |
color_mask = np.random.random((1, 3)).tolist()[0] | |
for i in range(3): | |
img[:,:,i] = color_mask[i] | |
ax.imshow(np.dstack((img, m))) | |
updated_image_path = get_new_image_name(image_path, func_name="segment-image") | |
plt.axis('off') | |
plt.savefig( | |
updated_image_path, | |
bbox_inches="tight", dpi=300, pad_inches=0.0 | |
) | |
return updated_image_path | |
class Text2Box: | |
def __init__(self, device): | |
print(f"Initializing ObjectDetection to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.model_checkpoint_path = os.path.join("checkpoints","groundingdino") | |
self.model_config_path = os.path.join("checkpoints","grounding_config.py") | |
self.download_parameters() | |
self.box_threshold = 0.3 | |
self.text_threshold = 0.25 | |
self.grounding = (self.load_model()).to(self.device) | |
def download_parameters(self): | |
url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth" | |
if not os.path.exists(self.model_checkpoint_path): | |
wget.download(url,out=self.model_checkpoint_path) | |
config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py" | |
if not os.path.exists(self.model_config_path): | |
wget.download(config_url,out=self.model_config_path) | |
def load_image(self,image_path): | |
# load image | |
image_pil = Image.open(image_path).convert("RGB") # load image | |
transform = T.Compose( | |
[ | |
T.RandomResize([512], max_size=1333), | |
T.ToTensor(), | |
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
image, _ = transform(image_pil, None) # 3, h, w | |
return image_pil, image | |
def load_model(self): | |
args = SLConfig.fromfile(self.model_config_path) | |
args.device = self.device | |
model = build_model(args) | |
checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu") | |
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) | |
print(load_res) | |
_ = model.eval() | |
return model | |
def get_grounding_boxes(self, image, caption, with_logits=True): | |
caption = caption.lower() | |
caption = caption.strip() | |
if not caption.endswith("."): | |
caption = caption + "." | |
image = image.to(self.device) | |
with torch.no_grad(): | |
outputs = self.grounding(image[None], captions=[caption]) | |
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) | |
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) | |
logits.shape[0] | |
# filter output | |
logits_filt = logits.clone() | |
boxes_filt = boxes.clone() | |
filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold | |
logits_filt = logits_filt[filt_mask] # num_filt, 256 | |
boxes_filt = boxes_filt[filt_mask] # num_filt, 4 | |
logits_filt.shape[0] | |
# get phrase | |
tokenlizer = self.grounding.tokenizer | |
tokenized = tokenlizer(caption) | |
# build pred | |
pred_phrases = [] | |
for logit, box in zip(logits_filt, boxes_filt): | |
pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer) | |
if with_logits: | |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") | |
else: | |
pred_phrases.append(pred_phrase) | |
return boxes_filt, pred_phrases | |
def plot_boxes_to_image(self, image_pil, tgt): | |
H, W = tgt["size"] | |
boxes = tgt["boxes"] | |
labels = tgt["labels"] | |
assert len(boxes) == len(labels), "boxes and labels must have same length" | |
draw = ImageDraw.Draw(image_pil) | |
mask = Image.new("L", image_pil.size, 0) | |
mask_draw = ImageDraw.Draw(mask) | |
# draw boxes and masks | |
for box, label in zip(boxes, labels): | |
# from 0..1 to 0..W, 0..H | |
box = box * torch.Tensor([W, H, W, H]) | |
# from xywh to xyxy | |
box[:2] -= box[2:] / 2 | |
box[2:] += box[:2] | |
# random color | |
color = tuple(np.random.randint(0, 255, size=3).tolist()) | |
# draw | |
x0, y0, x1, y1 = box | |
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) | |
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) | |
# draw.text((x0, y0), str(label), fill=color) | |
font = ImageFont.load_default() | |
if hasattr(font, "getbbox"): | |
bbox = draw.textbbox((x0, y0), str(label), font) | |
else: | |
w, h = draw.textsize(str(label), font) | |
bbox = (x0, y0, w + x0, y0 + h) | |
# bbox = draw.textbbox((x0, y0), str(label)) | |
draw.rectangle(bbox, fill=color) | |
draw.text((x0, y0), str(label), fill="white") | |
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2) | |
return image_pil, mask | |
def inference(self, inputs): | |
image_path, det_prompt = inputs.split(",") | |
print(f"image_path={image_path}, text_prompt={det_prompt}") | |
image_pil, image = self.load_image(image_path) | |
boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt) | |
size = image_pil.size | |
pred_dict = { | |
"boxes": boxes_filt, | |
"size": [size[1], size[0]], # H,W | |
"labels": pred_phrases,} | |
image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0] | |
updated_image_path = get_new_image_name(image_path, func_name="detect-something") | |
updated_image = image_with_box.resize(size) | |
updated_image.save(updated_image_path) | |
print( | |
f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Inpainting: | |
def __init__(self, device): | |
self.device = device | |
self.revision = 'fp16' if 'cuda' in self.device else None | |
self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32 | |
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype,safety_checker=StableDiffusionSafetyChecker.from_pretrained('CompVis/stable-diffusion-safety-checker')).to(device) | |
def __call__(self, prompt, image, mask_image, height=512, width=512, num_inference_steps=50): | |
update_image = self.inpaint(prompt=prompt, image=image.resize((width, height)), | |
mask_image=mask_image.resize((width, height)), height=height, width=width, num_inference_steps=num_inference_steps).images[0] | |
return update_image | |
class InfinityOutPainting: | |
template_model = True # Add this line to show this is a template model. | |
def __init__(self, ImageCaptioning, Inpainting, VisualQuestionAnswering): | |
self.llm = OpenAI(temperature=0) | |
self.ImageCaption = ImageCaptioning | |
self.inpaint = Inpainting | |
self.ImageVQA = VisualQuestionAnswering | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def get_BLIP_vqa(self, image, question): | |
inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device, | |
self.ImageVQA.torch_dtype) | |
out = self.ImageVQA.model.generate(**inputs) | |
answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}") | |
return answer | |
def get_BLIP_caption(self, image): | |
inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device, | |
self.ImageCaption.torch_dtype) | |
out = self.ImageCaption.model.generate(**inputs) | |
BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True) | |
return BLIP_caption | |
def check_prompt(self, prompt): | |
check = f"Here is a paragraph with adjectives. " \ | |
f"{prompt} " \ | |
f"Please change all plural forms in the adjectives to singular forms. " | |
return self.llm(check) | |
def get_imagine_caption(self, image, imagine): | |
BLIP_caption = self.get_BLIP_caption(image) | |
background_color = self.get_BLIP_vqa(image, 'what is the background color of this image') | |
style = self.get_BLIP_vqa(image, 'what is the style of this image') | |
imagine_prompt = f"let's pretend you are an excellent painter and now " \ | |
f"there is an incomplete painting with {BLIP_caption} in the center, " \ | |
f"please imagine the complete painting and describe it" \ | |
f"you should consider the background color is {background_color}, the style is {style}" \ | |
f"You should make the painting as vivid and realistic as possible" \ | |
f"You can not use words like painting or picture" \ | |
f"and you should use no more than 50 words to describe it" | |
caption = self.llm(imagine_prompt) if imagine else BLIP_caption | |
caption = self.check_prompt(caption) | |
print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print( | |
f'Prompt: {caption}') | |
return caption | |
def resize_image(self, image, max_size=1000000, multiple=8): | |
aspect_ratio = image.size[0] / image.size[1] | |
new_width = int(math.sqrt(max_size * aspect_ratio)) | |
new_height = int(new_width / aspect_ratio) | |
new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple) | |
return image.resize((new_width, new_height)) | |
def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt): | |
old_img = original_img | |
while (old_img.size != tosize): | |
prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine) | |
crop_w = 15 if old_img.size[0] != tosize[0] else 0 | |
crop_h = 15 if old_img.size[1] != tosize[1] else 0 | |
old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h)) | |
temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0], | |
expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[ | |
1]) | |
temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size, | |
color="white") | |
x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2 | |
temp_canvas.paste(old_img, (x, y)) | |
temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height)) | |
resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask) | |
image = self.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask, | |
height=resized_temp_canvas.height, width=resized_temp_canvas.width, | |
num_inference_steps=50).resize( | |
(temp_canvas.width, temp_canvas.height), Image.ANTIALIAS) | |
image = blend_gt2pt(old_img, image) | |
old_img = image | |
return old_img | |
def inference(self, inputs): | |
image_path, resolution = inputs.split(',') | |
width, height = resolution.split('x') | |
tosize = (int(width), int(height)) | |
image = Image.open(image_path) | |
image = ImageOps.crop(image, (10, 10, 10, 10)) | |
out_painted_image = self.dowhile(image, tosize, 4, True, False) | |
updated_image_path = get_new_image_name(image_path, func_name="outpainting") | |
out_painted_image.save(updated_image_path) | |
print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class ObjectSegmenting: | |
template_model = True # Add this line to show this is a template model. | |
def __init__(self, Text2Box:Text2Box, Segmenting:Segmenting): | |
# self.llm = OpenAI(temperature=0) | |
self.grounding = Text2Box | |
self.sam = Segmenting | |
def inference(self, inputs): | |
image_path, det_prompt = inputs.split(",") | |
print(f"image_path={image_path}, text_prompt={det_prompt}") | |
image_pil, image = self.grounding.load_image(image_path) | |
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, det_prompt) | |
updated_image_path = self.sam.segment_image_with_boxes(image_pil,image_path,boxes_filt,pred_phrases) | |
print( | |
f"\nProcessed ObejectSegmenting, Input Image: {image_path}, Object to be Segment {det_prompt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
def merge_masks(self, masks): | |
''' | |
Args: | |
mask (numpy.ndarray): shape N x 1 x H x W | |
Outputs: | |
new_mask (numpy.ndarray): shape H x W | |
''' | |
if type(masks) == torch.Tensor: | |
x = masks | |
elif type(masks) == np.ndarray: | |
x = torch.tensor(masks,dtype=int) | |
else: | |
raise TypeError("the type of the input masks must be numpy.ndarray or torch.tensor") | |
x = x.squeeze(dim=1) | |
value, _ = x.max(dim=0) | |
new_mask = value.cpu().numpy() | |
new_mask.astype(np.uint8) | |
return new_mask | |
def get_mask(self, image_path, text_prompt): | |
print(f"image_path={image_path}, text_prompt={text_prompt}") | |
# image_pil (PIL.Image.Image) -> size: W x H | |
# image (numpy.ndarray) -> H x W x 3 | |
image_pil, image = self.grounding.load_image(image_path) | |
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, text_prompt) | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
self.sam.sam_predictor.set_image(image) | |
# masks (torch.tensor) -> N x 1 x H x W | |
masks = self.sam.get_mask_with_boxes(image_pil, image, boxes_filt) | |
# merged_mask -> H x W | |
merged_mask = self.merge_masks(masks) | |
# draw output image | |
for mask in masks: | |
image = self.sam.show_mask(mask[0].cpu().numpy(), image, random_color=True, transparency=0.3) | |
Image.fromarray(merged_mask) | |
return merged_mask | |
class ImageEditing: | |
template_model = True | |
def __init__(self, Text2Box:Text2Box, Segmenting:Segmenting, Inpainting:Inpainting): | |
print("Initializing ImageEditing") | |
self.sam = Segmenting | |
self.grounding = Text2Box | |
self.inpaint = Inpainting | |
def pad_edge(self,mask,padding): | |
#mask Tensor [H,W] | |
mask = mask.numpy() | |
true_indices = np.argwhere(mask) | |
mask_array = np.zeros_like(mask, dtype=bool) | |
for idx in true_indices: | |
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) | |
mask_array[padded_slice] = True | |
new_mask = (mask_array * 255).astype(np.uint8) | |
#new_mask | |
return new_mask | |
def inference_remove(self, inputs): | |
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
return self.inference_replace_sam(f"{image_path},{to_be_removed_txt},background") | |
def inference_replace_sam(self,inputs): | |
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",") | |
print(f"image_path={image_path}, to_be_replaced_txt={to_be_replaced_txt}") | |
image_pil, image = self.grounding.load_image(image_path) | |
boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, to_be_replaced_txt) | |
image = cv2.imread(image_path) | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
self.sam.sam_predictor.set_image(image) | |
masks = self.sam.get_mask_with_boxes(image_pil, image, boxes_filt) | |
mask = torch.sum(masks, dim=0).unsqueeze(0) | |
mask = torch.where(mask > 0, True, False) | |
mask = mask.squeeze(0).squeeze(0).cpu() #tensor | |
mask = self.pad_edge(mask,padding=20) #numpy | |
mask_image = Image.fromarray(mask) | |
updated_image = self.inpaint(prompt=replace_with_txt, image=image_pil, | |
mask_image=mask_image) | |
updated_image_path = get_new_image_name(image_path, func_name="replace-something") | |
updated_image = updated_image.resize(image_pil.size) | |
updated_image.save(updated_image_path) | |
print( | |
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class BackgroundRemoving: | |
''' | |
using to remove the background of the given picture | |
''' | |
template_model = True | |
def __init__(self,VisualQuestionAnswering:VisualQuestionAnswering, Text2Box:Text2Box, Segmenting:Segmenting): | |
self.vqa = VisualQuestionAnswering | |
self.obj_segmenting = ObjectSegmenting(Text2Box,Segmenting) | |
def inference(self, image_path): | |
''' | |
given a image, return the picture only contains the extracted main object | |
''' | |
updated_image_path = None | |
mask = self.get_mask(image_path) | |
image = Image.open(image_path) | |
mask = Image.fromarray(mask) | |
image.putalpha(mask) | |
updated_image_path = get_new_image_name(image_path, func_name="detect-something") | |
image.save(updated_image_path) | |
return updated_image_path | |
def get_mask(self, image_path): | |
''' | |
Description: | |
given an image path, return the mask of the main object. | |
Args: | |
image_path (string): the file path of the image | |
Outputs: | |
mask (numpy.ndarray): H x W | |
''' | |
vqa_input = f"{image_path}, what is the main object in the image?" | |
text_prompt = self.vqa.inference(vqa_input) | |
mask = self.obj_segmenting.get_mask(image_path,text_prompt) | |
return mask | |
class MultiModalVisualAgent: | |
def __init__( | |
self, | |
load_dict, | |
prefix: str = VISUAL_AGENT_PREFIX, | |
format_instructions: str = VISUAL_AGENT_FORMAT_INSTRUCTIONS, | |
suffix: str = VISUAL_AGENT_SUFFIX | |
): | |
print(f"Initializing MultiModalVisualAgent, load_dict={load_dict}") | |
if 'ImageCaptioning' not in load_dict: | |
raise ValueError("You have to load ImageCaptioning as a basic function for MultiModalVisualAgent") | |
self.models = {} | |
for class_name, device in load_dict.items(): | |
self.models[class_name] = globals()[class_name](device=device) | |
for class_name, module in globals().items(): | |
if getattr(module, 'template_model', False): | |
template_required_names = { | |
k for k in inspect.signature(module.__init__).parameters.keys() if k!='self' | |
} | |
loaded_names = set([type(e).__name__ for e in self.models.values()]) | |
if template_required_names.issubset(loaded_names): | |
self.models[class_name] = globals()[class_name]( | |
**{name: self.models[name] for name in template_required_names}) | |
print(f"All the Available Functions: {self.models}") | |
self.tools = [] | |
for instance in self.models.values(): | |
for e in dir(instance): | |
if e.startswith('inference'): | |
func = getattr(instance, e) | |
self.tools.append( | |
Tool(name=func.name, description=func.description, func=func) | |
) | |
self.llm = OpenAI(temperature=0) | |
self.memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='output' | |
) | |
def init_agent(self, lang): | |
self.memory.clear() | |
agent_prefix = self.prefix | |
agent_suffix = self.suffix | |
agent_format_instructions = self.format_instructions | |
if lang=='English': | |
PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = agent_prefix, agent_format_instructions, agent_suffix | |
else: | |
PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_AGENT_PREFIX_CN, VISUAL_AGENT_FORMAT_INSTRUCTIONS_CN, VISUAL_AGENT_SUFFIX_CN | |
self.agent = initialize_agent( | |
self.tools, | |
self.llm, | |
agent="conversational-react-description", | |
verbose=True, | |
memory=self.memory, | |
return_intermediate_steps=True, | |
agent_kwargs={ | |
'prefix': PREFIX, | |
'format_instructions': FORMAT_INSTRUCTIONS, | |
'suffix': SUFFIX | |
}, | |
) | |
def run_text(self, text): | |
self.agent.memory.buffer = cut_dialogue_history( | |
self.agent.memory.buffer, | |
keep_last_n_words=500 | |
) | |
res = self.agent({"input": text.strip()}) | |
res['output'] = res['output'].replace("\\", "/") | |
response = re.sub('(image/[-\w]*.png)', lambda m: f'![](file={m.group(0)})*{m.group(0)}*', res['output']) | |
print(f"\nProcessed run_text, Input text: {text}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return response | |
def run_image(self, image, lang): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
img = Image.open(image) | |
width, height = img.size | |
ratio = min(512 / width, 512 / height) | |
width_new, height_new = (round(width * ratio), round(height * ratio)) | |
width_new = int(np.round(width_new / 64.0)) * 64 | |
height_new = int(np.round(height_new / 64.0)) * 64 | |
img = img.resize((width_new, height_new)) | |
img = img.convert('RGB') | |
img.save(image_filename, "PNG") | |
description = self.models['ImageCaptioning'].inference(image_filename) | |
if lang == 'Chinese': | |
Human_prompt = f'\nHuman: 提供一张名为 {image_filename}的图片。它的描述是: {description}。 这些信息帮助你理解这个图像,但是你应该使用工具来完成下面的任务,而不是直接从我的描述中想象。 如果你明白了, 说 \"收到\". \n' | |
AI_prompt = "收到。 " | |
else: | |
Human_prompt = f'\nHuman: provide a figure named {image_filename}. The description is: {description}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n' | |
AI_prompt = "Received. " | |
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt | |
print(f"\nProcessed run_image, Input image: {image_filename}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return AI_prompt | |
def clear_memory(self): | |
self.memory.clear() | |
###### usage | |
from swarms.agents.message import Message | |
class MultiModalAgent: | |
""" | |
A user-friendly abstraction over the MultiModalVisualAgent that provides a simple interface | |
to process both text and images. | |
Initializes the MultiModalAgent. | |
Architecture: | |
Parameters: | |
load_dict (dict, optional): Dictionary of class names and devices to load. | |
Defaults to a basic configuration. | |
temperature (float, optional): Temperature for the OpenAI model. Defaults to 0. | |
default_language (str, optional): Default language for the agent. | |
Defaults to "English". | |
Usage | |
-------------- | |
For chats: | |
------------ | |
agent = MultiModalAgent() | |
agent.chat("Hello") | |
----------- | |
Or just with text | |
------------ | |
agent = MultiModalAgent() | |
agent.run_text("Hello") | |
""" | |
def __init__( | |
self, | |
load_dict, | |
temperature: int = 0.1, | |
language: str = "english" | |
): | |
self.load_dict = load_dict | |
self.temperature = temperature | |
self.langigage = language | |
# if load_dict is None: | |
# self.load_dict = { | |
# "ImageCaptioning": "default_device" | |
# } | |
self.agent = MultiModalVisualAgent( | |
load_dict, | |
temperature | |
) | |
self.language = language | |
self.history = [] | |
def run_text( | |
self, | |
text: str = None, | |
language = "english" | |
): | |
"""Run text through the model""" | |
if language is None: | |
language = self.language | |
try: | |
self.agent.init_agent(language) | |
return self.agent.run_text(text) | |
except Exception as e: | |
return f"Error processing text: {str(e)}" | |
def run_img( | |
self, | |
image_path: str, | |
language = "english" | |
): | |
"""If language is None""" | |
if language is None: | |
language = self.default_language | |
try: | |
return self.agent.run_image( | |
image_path, | |
language | |
) | |
except Exception as error: | |
return f"Error processing image: {str(error)}" | |
def chat( | |
self, | |
msg: str = None, | |
language: str = "english", | |
streaming: bool = False | |
): | |
""" | |
Run chat with the multi-modal agent | |
Args: | |
msg (str, optional): Message to send to the agent. Defaults to None. | |
language (str, optional): Language to use. Defaults to None. | |
streaming (bool, optional): Whether to stream the response. Defaults to False. | |
Returns: | |
str: Response from the agent | |
Usage: | |
-------------- | |
agent = MultiModalAgent() | |
agent.chat("Hello") | |
""" | |
if language is None: | |
language = self.default_language | |
#add users message to the history | |
self.history.append( | |
Message( | |
"User", | |
msg | |
) | |
) | |
#process msg | |
try: | |
self.agent.init_agent(language) | |
response = self.agent.run_text(msg) | |
#add agent's response to the history | |
self.history.append( | |
Message( | |
"Agent", | |
response | |
) | |
) | |
#if streaming is = True | |
if streaming: | |
return self._stream_response(response) | |
else: | |
response | |
except Exception as error: | |
error_message = f"Error processing message: {str(error)}" | |
#add error to history | |
self.history.append( | |
Message( | |
"Agent", | |
error_message | |
) | |
) | |
return error_message | |
def _stream_response( | |
self, | |
response: str = None | |
): | |
""" | |
Yield the response token by token (word by word) | |
Usage: | |
-------------- | |
for token in _stream_response(response): | |
print(token) | |
""" | |
for token in response.split(): | |
yield token | |
def clear(self): | |
"""Clear agent's memory""" | |
try: | |
self.agent.clear_memory() | |
except Exception as e: | |
return f"Error cleaning memory: {str(e)}" | |