Spaces:
Runtime error
Runtime error
<!-- PROJECT LOGO --> | |
<p align="center"> | |
<h1 align="center">ECON: Explicit Clothed humans Obtained from Normals</h1> | |
<p align="center"> | |
<a href="http://xiuyuliang.cn/"><strong>Yuliang Xiu</strong></a> | |
路 | |
<a href="https://ps.is.tuebingen.mpg.de/person/jyang"><strong>Jinlong Yang</strong></a> | |
路 | |
<a href="https://hoshino042.github.io/homepage/"><strong>Xu Cao</strong></a> | |
路 | |
<a href="https://ps.is.mpg.de/~dtzionas"><strong>Dimitrios Tzionas</strong></a> | |
路 | |
<a href="https://ps.is.tuebingen.mpg.de/person/black"><strong>Michael J. Black</strong></a> | |
</p> | |
<h2 align="center">arXiv 2022</h2> | |
<div align="center"> | |
<img src="./assets/teaser.gif" alt="Logo" width="100%"> | |
</div> | |
<p align="center"> | |
<br> | |
<a href="https://pytorch.org/get-started/locally/"><img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white"></a> | |
<a href="https://pytorchlightning.ai/"><img alt="Lightning" src="https://img.shields.io/badge/-Lightning-792ee5?logo=pytorchlightning&logoColor=white"></a> | |
<a href="https://cupy.dev/"><img alt="cupy" src="https://img.shields.io/badge/-Cupy-46C02B?logo=numpy&logoColor=white"></a> | |
<a href="https://twitter.com/yuliangxiu"><img alt='Twitter' src="https://img.shields.io/twitter/follow/yuliangxiu?label=%40yuliangxiu"></a> | |
<br></br> | |
<a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing' style='padding-left: 0.5rem;'><img src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a><br></br> | |
<a href="https://arxiv.org/abs/2212.07422"> | |
<img src='https://img.shields.io/badge/Paper-PDF-green?style=for-the-badge&logo=adobeacrobatreader&logoWidth=20&logoColor=white&labelColor=66cc00&color=94DD15' alt='Paper PDF'> | |
</a> | |
<a href='https://xiuyuliang.cn/econ/'> | |
<img src='https://img.shields.io/badge/ECON-Page-orange?style=for-the-badge&logo=Google%20chrome&logoColor=white&labelColor=D35400' alt='Project Page'></a> | |
<a href="https://discord.gg/Vqa7KBGRyk"><img src="https://img.shields.io/discord/940240966844035082?color=7289DA&labelColor=4a64bd&logo=discord&logoColor=white&style=for-the-badge"></a> | |
<a href="https://youtu.be/j5hw4tsWpoY"><img alt="youtube views" title="Subscribe to my YouTube channel" src="https://img.shields.io/youtube/views/j5hw4tsWpoY?logo=youtube&labelColor=ce4630&style=for-the-badge"/></a> | |
</p> | |
</p> | |
<br/> | |
ECON is designed for "Human digitization from a color image", which combines the best properties of implicit and explicit representations, to infer high-fidelity 3D clothed humans from in-the-wild images, even with **loose clothing** or in **challenging poses**. ECON also supports **multi-person reconstruction** and **SMPL-X based animation**. | |
<br/> | |
<br/> | |
## News :triangular_flag_on_post: | |
- [2022/12/22] <a href='https://colab.research.google.com/drive/1YRgwoRCZIrSB2e7auEWFyG10Xzjbrbno?usp=sharing' style='padding-left: 0.5rem;'><img src='https://colab.research.google.com/assets/colab-badge.svg' alt='Google Colab'></a> is now available, created by [AroArz](https://github.com/AroArz)! | |
- [2022/12/15] Both <a href="#demo">demo</a> and <a href="https://arxiv.org/abs/2212.07422">arXiv</a> are available. | |
## TODO | |
- [ ] Blender add-on for FBX export | |
- [ ] Full RGB texture generation | |
<br> | |
<!-- TABLE OF CONTENTS --> | |
<details open="open" style='padding: 10px; border-radius:5px 30px 30px 5px; border-style: solid; border-width: 1px;'> | |
<summary>Table of Contents</summary> | |
<ol> | |
<li> | |
<a href="#instructions">Instructions</a> | |
</li> | |
<li> | |
<a href="#demo">Demo</a> | |
</li> | |
<li> | |
<a href="#applications">Applications</a> | |
</li> | |
<li> | |
<a href="#tricks">Tricks</a> | |
</li> | |
<li> | |
<a href="#citation">Citation</a> | |
</li> | |
</ol> | |
</details> | |
<br/> | |
## Instructions | |
- See [docs/installation.md](docs/installation.md) to install all the required packages and setup the models | |
## Demo | |
```bash | |
# For single-person image-based reconstruction | |
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results | |
# For multi-person image-based reconstruction (see config/econ.yaml) | |
python -m apps.infer -cfg ./configs/econ.yaml -in_dir ./examples -out_dir ./results -multi | |
# To generate the demo video of reconstruction results | |
python -m apps.multi_render -n {filename} | |
# To animate the reconstruction with SMPL-X pose parameters | |
python -m apps.avatarizer -n {filename} | |
``` | |
## Tricks | |
### Some adjustable parameters in _config/econ.yaml_ | |
- `use_ifnet: True` | |
- True: use IF-Nets+ for mesh completion ( $\text{ECON}_\text{IF}$ - Better quality) | |
- False: use SMPL-X for mesh completion ( $\text{ECON}_\text{EX}$ - Faster speed) | |
- `use_smpl: ["hand", "face"]` | |
- [ ]: don't use either hands or face parts from SMPL-X | |
- ["hand"]: only use the **visible** hands from SMPL-X | |
- ["hand", "face"]: use both **visible** hands and face from SMPL-X | |
- `thickness: 2cm` | |
- could be increased accordingly in case final reconstruction **xx_full.obj** looks flat | |
- `hps_type: PIXIE` | |
- "pixie": more accurate for face and hands | |
- "pymafx": more robust for challenging poses | |
- `k: 4` | |
- could be reduced accordingly in case the surface of **xx_full.obj** has discontinous artifacts | |
<br/> | |
## More Qualitative Results | |
| ![OOD Poses](assets/OOD-poses.jpg) | | |
| :------------------------------------: | | |
| _Challenging Poses_ | | |
| ![OOD Clothes](assets/OOD-outfits.jpg) | | |
| _Loose Clothes_ | | |
## Applications | |
| ![SHHQ](assets/SHHQ.gif) | ![crowd](assets/crowd.gif) | | |
| :----------------------------------------------------------------------------------------------------: | :-----------------------------------------: | | |
| _ECON could provide pseudo 3D GT for [SHHQ Dataset](https://github.com/stylegan-human/StyleGAN-Human)_ | _ECON supports multi-person reconstruction_ | | |
<br/> | |
<br/> | |
## Citation | |
```bibtex | |
@article{xiu2022econ, | |
title={{ECON: Explicit Clothed humans Obtained from Normals}}, | |
author={Xiu, Yuliang and Yang, Jinlong and Cao, Xu and Tzionas, Dimitrios and Black, Michael J.}, | |
year={2022} | |
journal={{arXiv}:2212.07422}, | |
} | |
``` | |
<br/> | |
## Acknowledgments | |
We thank [Lea Hering](https://is.mpg.de/person/lhering) and [Radek Dan臎膷ek](https://is.mpg.de/person/rdanecek) for proof reading, [Yao Feng](https://ps.is.mpg.de/person/yfeng), [Haven Feng](https://is.mpg.de/person/hfeng), and [Weiyang Liu](https://wyliu.com/) for their feedback and discussions, [Tsvetelina Alexiadis](https://ps.is.mpg.de/person/talexiadis) for her help with the AMT perceptual study. | |
Here are some great resources we benefit from: | |
- [ICON](https://github.com/YuliangXiu/ICON) for SMPL-X Body Fitting | |
- [BiNI](https://github.com/hoshino042/bilateral_normal_integration) for Bilateral Normal Integration | |
- [MonoPortDataset](https://github.com/Project-Splinter/MonoPortDataset) for Data Processing, [MonoPort](https://github.com/Project-Splinter/MonoPort) for fast implicit surface query | |
- [rembg](https://github.com/danielgatis/rembg) for Human Segmentation | |
- [pypoisson](https://github.com/mmolero/pypoisson) for poisson reconstruction | |
- [MediaPipe](https://google.github.io/mediapipe/getting_started/python.html) for full-body landmark estimation | |
- [PyTorch-NICP](https://github.com/wuhaozhe/pytorch-nicp) for non-rigid registration | |
- [smplx](https://github.com/vchoutas/smplx), [PyMAF-X](https://www.liuyebin.com/pymaf-x/), [PIXIE](https://github.com/YadiraF/PIXIE) for Human Pose & Shape Estimation | |
- [CAPE](https://github.com/qianlim/CAPE) and [THuman](https://github.com/ZhengZerong/DeepHuman/tree/master/THUmanDataset) for Dataset | |
- [PyTorch3D](https://github.com/facebookresearch/pytorch3d) for Differential Rendering | |
Some images used in the qualitative examples come from [pinterest.com](https://www.pinterest.com/). | |
This project has received funding from the European Union鈥檚 Horizon 2020 research and innovation programme under the Marie Sk艂odowska-Curie grant agreement No.860768 ([CLIPE Project](https://www.clipe-itn.eu)). | |
--- | |
<br> | |
## License | |
This code and model are available for non-commercial scientific research purposes as defined in the [LICENSE](LICENSE) file. By downloading and using the code and model you agree to the terms in the [LICENSE](LICENSE). | |
## Disclosure | |
MJB has received research gift funds from Adobe, Intel, Nvidia, Meta/Facebook, and Amazon. MJB has financial interests in Amazon, Datagen Technologies, and Meshcapade GmbH. While MJB is a part-time employee of Meshcapade, his research was performed solely at, and funded solely by, the Max Planck Society. | |
## Contact | |
For technical questions, please contact yuliang.xiu@tue.mpg.de | |
For commercial licensing, please contact ps-licensing@tue.mpg.de | |