Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import os | |
from yacs.config import CfgNode as CN | |
_C = CN(new_allowed=True) | |
# needed by trainer | |
_C.name = "default" | |
_C.gpus = [0] | |
_C.test_gpus = [1] | |
_C.devices = 1 | |
_C.root = "./data/" | |
_C.ckpt_dir = "./data/ckpt/" | |
_C.resume_path = "" | |
_C.normal_path = "" | |
_C.ifnet_path = "" | |
_C.results_path = "./results/" | |
_C.projection_mode = "orthogonal" | |
_C.num_views = 1 | |
_C.sdf = False | |
_C.sdf_clip = 5.0 | |
_C.lr_netF = 1e-3 | |
_C.lr_netB = 1e-3 | |
_C.lr_netD = 1e-3 | |
_C.lr_G = 1e-3 | |
_C.weight_decay = 0.0 | |
_C.momentum = 0.0 | |
_C.optim = "RMSprop" | |
_C.schedule = [5, 10, 15] | |
_C.gamma = 0.1 | |
_C.overfit = False | |
_C.resume = False | |
_C.test_mode = False | |
_C.test_uv = False | |
_C.draw_geo_thres = 0.60 | |
_C.num_sanity_val_steps = 2 | |
_C.fast_dev = 0 | |
_C.get_fit = False | |
_C.agora = False | |
_C.optim_cloth = False | |
_C.optim_body = False | |
_C.mcube_res = 256 | |
_C.clean_mesh = True | |
_C.remesh = False | |
_C.body_overlap_thres = 1.0 | |
_C.cloth_overlap_thres = 1.0 | |
_C.batch_size = 4 | |
_C.num_threads = 8 | |
_C.num_epoch = 10 | |
_C.freq_plot = 0.01 | |
_C.freq_show_train = 0.1 | |
_C.freq_show_val = 0.2 | |
_C.freq_eval = 0.5 | |
_C.accu_grad_batch = 4 | |
_C.vol_res = 128 | |
_C.test_items = ["sv", "mv", "mv-fusion", "hybrid", "dc-pred", "gt"] | |
_C.net = CN() | |
_C.net.gtype = "HGPIFuNet" | |
_C.net.ctype = "resnet18" | |
_C.net.classifierIMF = "MultiSegClassifier" | |
_C.net.netIMF = "resnet18" | |
_C.net.norm = "group" | |
_C.net.norm_mlp = "group" | |
_C.net.norm_color = "group" | |
_C.net.hg_down = "ave_pool" | |
_C.net.num_views = 1 | |
_C.bni = CN() | |
_C.bni.k = 4 | |
_C.bni.lambda1 = 1e-4 | |
_C.bni.boundary_consist = 1e-6 | |
_C.bni.poisson_depth = 10 | |
_C.bni.use_poisson = True | |
_C.bni.use_smpl = ["face", "hand"] | |
_C.bni.use_ifnet = False | |
_C.bni.finish = False | |
_C.bni.thickness = 0.00 | |
_C.bni.hand_thres = 4e-2 | |
_C.bni.face_thres = 6e-2 | |
_C.bni.hps_type = "pixie" | |
_C.bni.texture_src = "image" | |
_C.bni.cut_intersection = True | |
# kernel_size, stride, dilation, padding | |
_C.net.conv1 = [7, 2, 1, 3] | |
_C.net.conv3x3 = [3, 1, 1, 1] | |
_C.net.num_stack = 4 | |
_C.net.num_hourglass = 2 | |
_C.net.hourglass_dim = 256 | |
_C.net.voxel_dim = 32 | |
_C.net.resnet_dim = 120 | |
_C.net.mlp_dim = [320, 1024, 512, 256, 128, 1] | |
_C.net.mlp_dim_knn = [320, 1024, 512, 256, 128, 3] | |
_C.net.mlp_dim_color = [513, 1024, 512, 256, 128, 3] | |
_C.net.mlp_dim_multiseg = [1088, 2048, 1024, 500] | |
_C.net.res_layers = [2, 3, 4] | |
_C.net.filter_dim = 256 | |
_C.net.smpl_dim = 3 | |
_C.net.cly_dim = 3 | |
_C.net.soft_dim = 64 | |
_C.net.z_size = 200.0 | |
_C.net.N_freqs = 10 | |
_C.net.geo_w = 0.1 | |
_C.net.norm_w = 0.1 | |
_C.net.dc_w = 0.1 | |
_C.net.C_cat_to_G = False | |
_C.net.skip_hourglass = True | |
_C.net.use_tanh = True | |
_C.net.soft_onehot = True | |
_C.net.no_residual = True | |
_C.net.use_attention = False | |
_C.net.prior_type = "icon" | |
_C.net.smpl_feats = ["sdf", "vis"] | |
_C.net.use_filter = True | |
_C.net.use_cc = False | |
_C.net.use_PE = False | |
_C.net.use_IGR = False | |
_C.net.use_gan = False | |
_C.net.in_geo = () | |
_C.net.in_nml = () | |
_C.net.front_losses = () | |
_C.net.back_losses = () | |
_C.net.gan = CN() | |
_C.net.gan.dim_detail = 64 | |
_C.net.gan.lambda_gan = 1 | |
_C.net.gan.lambda_grad = 10 | |
_C.net.gan.lambda_recon = 10 | |
_C.net.gan.d_reg_every = 16 | |
_C.net.gan.img_res = 512 | |
_C.dataset = CN() | |
_C.dataset.root = "" | |
_C.dataset.cached = True | |
_C.dataset.set_splits = [0.95, 0.04] | |
_C.dataset.types = [ | |
"3dpeople", | |
"axyz", | |
"renderpeople", | |
"renderpeople_p27", | |
"humanalloy", | |
] | |
_C.dataset.scales = [1.0, 100.0, 1.0, 1.0, 100.0 / 39.37] | |
_C.dataset.rp_type = "pifu900" | |
_C.dataset.th_type = "train" | |
_C.dataset.input_size = 512 | |
_C.dataset.rotation_num = 3 | |
_C.dataset.num_precomp = 10 # Number of segmentation classifiers | |
_C.dataset.num_multiseg = 500 # Number of categories per classifier | |
_C.dataset.num_knn = 10 # for loss/error | |
_C.dataset.num_knn_dis = 20 # for accuracy | |
_C.dataset.num_verts_max = 20000 | |
_C.dataset.zray_type = False | |
_C.dataset.online_smpl = False | |
_C.dataset.noise_type = ["z-trans", "pose", "beta"] | |
_C.dataset.noise_scale = [0.0, 0.0, 0.0] | |
_C.dataset.num_sample_geo = 10000 | |
_C.dataset.num_sample_color = 0 | |
_C.dataset.num_sample_seg = 0 | |
_C.dataset.num_sample_knn = 10000 | |
_C.dataset.sigma_geo = 5.0 | |
_C.dataset.sigma_color = 0.10 | |
_C.dataset.sigma_seg = 0.10 | |
_C.dataset.thickness_threshold = 20.0 | |
_C.dataset.ray_sample_num = 2 | |
_C.dataset.semantic_p = False | |
_C.dataset.remove_outlier = False | |
_C.dataset.laplacian_iters = 0 | |
_C.dataset.prior_type = "smpl" | |
_C.dataset.voxel_res = 128 | |
_C.dataset.train_bsize = 1.0 | |
_C.dataset.val_bsize = 1.0 | |
_C.dataset.test_bsize = 1.0 | |
_C.dataset.single = True | |
def get_cfg_defaults(): | |
"""Get a yacs CfgNode object with default values for my_project.""" | |
# Return a clone so that the defaults will not be altered | |
# This is for the "local variable" use pattern | |
return _C.clone() | |
# Alternatively, provide a way to import the defaults as | |
# a global singleton: | |
cfg = _C # users can `from config import cfg` | |
# cfg = get_cfg_defaults() | |
# cfg.merge_from_file('./configs/example.yaml') | |
# # Now override from a list (opts could come from the command line) | |
# opts = ['dataset.root', './data/XXXX', 'learning_rate', '1e-2'] | |
# cfg.merge_from_list(opts) | |
def update_cfg(cfg_file): | |
# cfg = get_cfg_defaults() | |
_C.merge_from_file(cfg_file) | |
# return cfg.clone() | |
return _C | |
def parse_args(args): | |
cfg_file = args.cfg_file | |
if args.cfg_file is not None: | |
cfg = update_cfg(args.cfg_file) | |
else: | |
cfg = get_cfg_defaults() | |
# if args.misc is not None: | |
# cfg.merge_from_list(args.misc) | |
return cfg | |
def parse_args_extend(args): | |
if args.resume: | |
if not os.path.exists(args.log_dir): | |
raise ValueError("Experiment are set to resume mode, but log directory does not exist.") | |
# load log's cfg | |
cfg_file = os.path.join(args.log_dir, "cfg.yaml") | |
cfg = update_cfg(cfg_file) | |
if args.misc is not None: | |
cfg.merge_from_list(args.misc) | |
else: | |
parse_args(args) | |