ECON / lib /common /config.py
Yuliang's picture
Support TEXTure
487ee6d
raw
history blame
6.5 kB
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
from yacs.config import CfgNode as CN
_C = CN(new_allowed=True)
# needed by trainer
_C.name = "default"
_C.gpus = [0]
_C.test_gpus = [1]
_C.devices = 1
_C.root = "./data/"
_C.ckpt_dir = "./data/ckpt/"
_C.resume_path = ""
_C.normal_path = ""
_C.ifnet_path = ""
_C.results_path = "./results/"
_C.projection_mode = "orthogonal"
_C.num_views = 1
_C.sdf = False
_C.sdf_clip = 5.0
_C.lr_netF = 1e-3
_C.lr_netB = 1e-3
_C.lr_netD = 1e-3
_C.lr_G = 1e-3
_C.weight_decay = 0.0
_C.momentum = 0.0
_C.optim = "RMSprop"
_C.schedule = [5, 10, 15]
_C.gamma = 0.1
_C.overfit = False
_C.resume = False
_C.test_mode = False
_C.test_uv = False
_C.draw_geo_thres = 0.60
_C.num_sanity_val_steps = 2
_C.fast_dev = 0
_C.get_fit = False
_C.agora = False
_C.optim_cloth = False
_C.optim_body = False
_C.mcube_res = 256
_C.clean_mesh = True
_C.remesh = False
_C.body_overlap_thres = 1.0
_C.cloth_overlap_thres = 1.0
_C.batch_size = 4
_C.num_threads = 8
_C.num_epoch = 10
_C.freq_plot = 0.01
_C.freq_show_train = 0.1
_C.freq_show_val = 0.2
_C.freq_eval = 0.5
_C.accu_grad_batch = 4
_C.vol_res = 128
_C.test_items = ["sv", "mv", "mv-fusion", "hybrid", "dc-pred", "gt"]
_C.net = CN()
_C.net.gtype = "HGPIFuNet"
_C.net.ctype = "resnet18"
_C.net.classifierIMF = "MultiSegClassifier"
_C.net.netIMF = "resnet18"
_C.net.norm = "group"
_C.net.norm_mlp = "group"
_C.net.norm_color = "group"
_C.net.hg_down = "ave_pool"
_C.net.num_views = 1
_C.bni = CN()
_C.bni.k = 4
_C.bni.lambda1 = 1e-4
_C.bni.boundary_consist = 1e-6
_C.bni.poisson_depth = 10
_C.bni.use_poisson = True
_C.bni.use_smpl = ["face", "hand"]
_C.bni.use_ifnet = False
_C.bni.finish = False
_C.bni.thickness = 0.00
_C.bni.hand_thres = 4e-2
_C.bni.face_thres = 6e-2
_C.bni.hps_type = "pixie"
_C.bni.texture_src = "image"
_C.bni.cut_intersection = True
# kernel_size, stride, dilation, padding
_C.net.conv1 = [7, 2, 1, 3]
_C.net.conv3x3 = [3, 1, 1, 1]
_C.net.num_stack = 4
_C.net.num_hourglass = 2
_C.net.hourglass_dim = 256
_C.net.voxel_dim = 32
_C.net.resnet_dim = 120
_C.net.mlp_dim = [320, 1024, 512, 256, 128, 1]
_C.net.mlp_dim_knn = [320, 1024, 512, 256, 128, 3]
_C.net.mlp_dim_color = [513, 1024, 512, 256, 128, 3]
_C.net.mlp_dim_multiseg = [1088, 2048, 1024, 500]
_C.net.res_layers = [2, 3, 4]
_C.net.filter_dim = 256
_C.net.smpl_dim = 3
_C.net.cly_dim = 3
_C.net.soft_dim = 64
_C.net.z_size = 200.0
_C.net.N_freqs = 10
_C.net.geo_w = 0.1
_C.net.norm_w = 0.1
_C.net.dc_w = 0.1
_C.net.C_cat_to_G = False
_C.net.skip_hourglass = True
_C.net.use_tanh = True
_C.net.soft_onehot = True
_C.net.no_residual = True
_C.net.use_attention = False
_C.net.prior_type = "icon"
_C.net.smpl_feats = ["sdf", "vis"]
_C.net.use_filter = True
_C.net.use_cc = False
_C.net.use_PE = False
_C.net.use_IGR = False
_C.net.use_gan = False
_C.net.in_geo = ()
_C.net.in_nml = ()
_C.net.front_losses = ()
_C.net.back_losses = ()
_C.net.gan = CN()
_C.net.gan.dim_detail = 64
_C.net.gan.lambda_gan = 1
_C.net.gan.lambda_grad = 10
_C.net.gan.lambda_recon = 10
_C.net.gan.d_reg_every = 16
_C.net.gan.img_res = 512
_C.dataset = CN()
_C.dataset.root = ""
_C.dataset.cached = True
_C.dataset.set_splits = [0.95, 0.04]
_C.dataset.types = [
"3dpeople",
"axyz",
"renderpeople",
"renderpeople_p27",
"humanalloy",
]
_C.dataset.scales = [1.0, 100.0, 1.0, 1.0, 100.0 / 39.37]
_C.dataset.rp_type = "pifu900"
_C.dataset.th_type = "train"
_C.dataset.input_size = 512
_C.dataset.rotation_num = 3
_C.dataset.num_precomp = 10 # Number of segmentation classifiers
_C.dataset.num_multiseg = 500 # Number of categories per classifier
_C.dataset.num_knn = 10 # for loss/error
_C.dataset.num_knn_dis = 20 # for accuracy
_C.dataset.num_verts_max = 20000
_C.dataset.zray_type = False
_C.dataset.online_smpl = False
_C.dataset.noise_type = ["z-trans", "pose", "beta"]
_C.dataset.noise_scale = [0.0, 0.0, 0.0]
_C.dataset.num_sample_geo = 10000
_C.dataset.num_sample_color = 0
_C.dataset.num_sample_seg = 0
_C.dataset.num_sample_knn = 10000
_C.dataset.sigma_geo = 5.0
_C.dataset.sigma_color = 0.10
_C.dataset.sigma_seg = 0.10
_C.dataset.thickness_threshold = 20.0
_C.dataset.ray_sample_num = 2
_C.dataset.semantic_p = False
_C.dataset.remove_outlier = False
_C.dataset.laplacian_iters = 0
_C.dataset.prior_type = "smpl"
_C.dataset.voxel_res = 128
_C.dataset.train_bsize = 1.0
_C.dataset.val_bsize = 1.0
_C.dataset.test_bsize = 1.0
_C.dataset.single = True
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _C.clone()
# Alternatively, provide a way to import the defaults as
# a global singleton:
cfg = _C # users can `from config import cfg`
# cfg = get_cfg_defaults()
# cfg.merge_from_file('./configs/example.yaml')
# # Now override from a list (opts could come from the command line)
# opts = ['dataset.root', './data/XXXX', 'learning_rate', '1e-2']
# cfg.merge_from_list(opts)
def update_cfg(cfg_file):
# cfg = get_cfg_defaults()
_C.merge_from_file(cfg_file)
# return cfg.clone()
return _C
def parse_args(args):
cfg_file = args.cfg_file
if args.cfg_file is not None:
cfg = update_cfg(args.cfg_file)
else:
cfg = get_cfg_defaults()
# if args.misc is not None:
# cfg.merge_from_list(args.misc)
return cfg
def parse_args_extend(args):
if args.resume:
if not os.path.exists(args.log_dir):
raise ValueError("Experiment are set to resume mode, but log directory does not exist.")
# load log's cfg
cfg_file = os.path.join(args.log_dir, "cfg.yaml")
cfg = update_cfg(cfg_file)
if args.misc is not None:
cfg.merge_from_list(args.misc)
else:
parse_args(args)