|
model_name = "InternLM" |
|
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`" |
|
|
|
from transformers import AutoModel, AutoTokenizer |
|
import time |
|
import threading |
|
import importlib |
|
from toolbox import update_ui, get_conf, ProxyNetworkActivate |
|
from multiprocessing import Process, Pipe |
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns |
|
|
|
|
|
|
|
|
|
|
|
def try_to_import_special_deps(): |
|
import sentencepiece |
|
|
|
def combine_history(prompt, hist): |
|
user_prompt = "<|User|>:{user}<eoh>\n" |
|
robot_prompt = "<|Bot|>:{robot}<eoa>\n" |
|
cur_query_prompt = "<|User|>:{user}<eoh>\n<|Bot|>:" |
|
messages = hist |
|
total_prompt = "" |
|
for message in messages: |
|
cur_content = message |
|
cur_prompt = user_prompt.replace("{user}", cur_content[0]) |
|
total_prompt += cur_prompt |
|
cur_prompt = robot_prompt.replace("{robot}", cur_content[1]) |
|
total_prompt += cur_prompt |
|
total_prompt = total_prompt + cur_query_prompt.replace("{user}", prompt) |
|
return total_prompt |
|
|
|
|
|
|
|
|
|
class GetInternlmHandle(LocalLLMHandle): |
|
|
|
def load_model_info(self): |
|
|
|
self.model_name = model_name |
|
self.cmd_to_install = cmd_to_install |
|
|
|
def try_to_import_special_deps(self, **kwargs): |
|
""" |
|
import something that will raise error if the user does not install requirement_*.txt |
|
""" |
|
import sentencepiece |
|
|
|
def load_model_and_tokenizer(self): |
|
|
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = get_conf('LOCAL_MODEL_DEVICE') |
|
with ProxyNetworkActivate('Download_LLM'): |
|
if self._model is None: |
|
tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True) |
|
if device=='cpu': |
|
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True).to(torch.bfloat16).cuda() |
|
|
|
model = model.eval() |
|
return model, tokenizer |
|
|
|
def llm_stream_generator(self, **kwargs): |
|
import torch |
|
import logging |
|
import copy |
|
import warnings |
|
import torch.nn as nn |
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig |
|
|
|
|
|
def adaptor(): |
|
model = self._model |
|
tokenizer = self._tokenizer |
|
prompt = kwargs['query'] |
|
max_length = kwargs['max_length'] |
|
top_p = kwargs['top_p'] |
|
temperature = kwargs['temperature'] |
|
history = kwargs['history'] |
|
real_prompt = combine_history(prompt, history) |
|
return model, tokenizer, real_prompt, max_length, top_p, temperature |
|
|
|
model, tokenizer, prompt, max_length, top_p, temperature = adaptor() |
|
prefix_allowed_tokens_fn = None |
|
logits_processor = None |
|
stopping_criteria = None |
|
additional_eos_token_id = 103028 |
|
generation_config = None |
|
|
|
|
|
|
|
inputs = tokenizer([prompt], padding=True, return_tensors="pt") |
|
input_length = len(inputs["input_ids"][0]) |
|
device = get_conf('LOCAL_MODEL_DEVICE') |
|
for k, v in inputs.items(): |
|
inputs[k] = v.to(device) |
|
input_ids = inputs["input_ids"] |
|
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] |
|
if generation_config is None: |
|
generation_config = model.generation_config |
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id |
|
if isinstance(eos_token_id, int): |
|
eos_token_id = [eos_token_id] |
|
if additional_eos_token_id is not None: |
|
eos_token_id.append(additional_eos_token_id) |
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
if has_default_max_length and generation_config.max_new_tokens is None: |
|
warnings.warn( |
|
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " |
|
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" |
|
" recommend using `max_new_tokens` to control the maximum length of the generation.", |
|
UserWarning, |
|
) |
|
elif generation_config.max_new_tokens is not None: |
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length |
|
if not has_default_max_length: |
|
logging.warn( |
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" |
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " |
|
"Please refer to the documentation for more information. " |
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", |
|
UserWarning, |
|
) |
|
|
|
if input_ids_seq_length >= generation_config.max_length: |
|
input_ids_string = "input_ids" |
|
logging.warning( |
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" |
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" |
|
" increasing `max_new_tokens`." |
|
) |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
|
|
logits_processor = model._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_seq_length, |
|
encoder_input_ids=input_ids, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
stopping_criteria = model._get_stopping_criteria( |
|
generation_config=generation_config, stopping_criteria=stopping_criteria |
|
) |
|
logits_warper = model._get_logits_warper(generation_config) |
|
|
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) |
|
scores = None |
|
while True: |
|
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
|
outputs = model( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
) |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
|
|
next_token_scores = logits_processor(input_ids, next_token_logits) |
|
next_token_scores = logits_warper(input_ids, next_token_scores) |
|
|
|
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1) |
|
if generation_config.do_sample: |
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
else: |
|
next_tokens = torch.argmax(probs, dim=-1) |
|
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
model_kwargs = model._update_model_kwargs_for_generation( |
|
outputs, model_kwargs, is_encoder_decoder=False |
|
) |
|
unfinished_sequences = unfinished_sequences.mul((min(next_tokens != i for i in eos_token_id)).long()) |
|
|
|
output_token_ids = input_ids[0].cpu().tolist() |
|
output_token_ids = output_token_ids[input_length:] |
|
for each_eos_token_id in eos_token_id: |
|
if output_token_ids[-1] == each_eos_token_id: |
|
output_token_ids = output_token_ids[:-1] |
|
response = tokenizer.decode(output_token_ids) |
|
|
|
yield response |
|
|
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): |
|
return |
|
|
|
|
|
|
|
|
|
|
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetInternlmHandle, model_name) |