Spaces:
Running
on
T4
Running
on
T4
import multiprocessing | |
import networkx as nx | |
import numpy as np | |
import argparse | |
import os | |
import trimesh | |
from tqdm import tqdm | |
import ray | |
from check_valid import check_step_valid_soild, load_data_with_prefix | |
from eval_brepgen import normalize_pc | |
def real2bit(data, n_bits=8, min_range=-1, max_range=1): | |
"""Convert vertices in [-1., 1.] to discrete values in [0, n_bits**2 - 1].""" | |
range_quantize = 2 ** n_bits - 1 | |
data_quantize = (data - min_range) * range_quantize / (max_range - min_range) | |
data_quantize = np.clip(data_quantize, a_min=0, a_max=range_quantize) # clip values | |
return data_quantize.astype(int) | |
def build_graph(faces, faces_adj, n_bit=4): | |
# faces1 and faces2 are np.array of shape (n_faces, n_points, n_points, 3) | |
# faces_adj1 and faces_adj2 are lists of (face_idx, face_idx) adjacency, ex. [[0, 1], [1, 2]] | |
if n_bit < 0: | |
faces_bits = faces | |
else: | |
faces_bits = real2bit(faces, n_bits=n_bit) | |
"""Build a graph from a shape.""" | |
G = nx.Graph() | |
for face_idx, face_bit in enumerate(faces_bits): | |
G.add_node(face_idx, shape_geometry=face_bit) | |
for pair in faces_adj: | |
G.add_edge(pair[0], pair[1]) | |
return G | |
def is_graph_identical(graph1, graph2, atol=None): | |
"""Check if two shapes are identical.""" | |
# Check if the two graphs are isomorphic considering node attributes | |
if atol is None: | |
return nx.is_isomorphic( | |
graph1, graph2, | |
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry']) | |
) | |
else: | |
return nx.is_isomorphic( | |
graph1, graph2, | |
node_match=lambda n1, n2: np.allclose(n1['shape_geometry'], n2['shape_geometry'], atol=atol, rtol=0) | |
) | |
def is_graph_identical_batch(graph_pair_list, atol=None): | |
is_identical_list = [] | |
for graph1, graph2 in graph_pair_list: | |
is_identical = is_graph_identical(graph1, graph2, atol=atol) | |
is_identical_list.append(is_identical) | |
return is_identical_list | |
is_graph_identical_remote = ray.remote(is_graph_identical_batch) | |
def find_connected_components(matrix): | |
N = len(matrix) | |
visited = [False] * N | |
components = [] | |
def dfs(idx, component): | |
stack = [idx] | |
while stack: | |
node = stack.pop() | |
if not visited[node]: | |
visited[node] = True | |
component.append(node) | |
for neighbor in range(N): | |
if matrix[node][neighbor] and not visited[neighbor]: | |
stack.append(neighbor) | |
for i in range(N): | |
if not visited[i]: | |
component = [] | |
dfs(i, component) | |
components.append(component) | |
return components | |
def compute_gen_unique(graph_list, is_use_ray=False, batch_size=100000, atol=None): | |
N = len(graph_list) | |
unique_graph_idx = list(range(N)) | |
pair_0, pair_1 = np.triu_indices(N, k=1) | |
check_pairs = list(zip(pair_0, pair_1)) | |
deduplicate_matrix = np.zeros((N, N), dtype=bool) | |
if not is_use_ray: | |
for idx1, idx2 in tqdm(check_pairs): | |
is_identical = is_graph_identical(graph_list[idx1], graph_list[idx2], atol=atol) | |
if is_identical: | |
unique_graph_idx.remove(idx2) if idx2 in unique_graph_idx else None | |
deduplicate_matrix[idx1, idx2] = True | |
deduplicate_matrix[idx2, idx1] = True | |
else: | |
ray.init() | |
N_batch = len(check_pairs) // batch_size | |
futures = [] | |
for i in tqdm(range(N_batch)): | |
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size] | |
batch_graph_pair = [(graph_list[idx1], graph_list[idx2]) for idx1, idx2 in batch_pairs] | |
futures.append(is_graph_identical_remote.remote(batch_graph_pair, atol)) | |
results = ray.get(futures) | |
for batch_idx in tqdm(range(N_batch)): | |
for idx, is_identical in enumerate(results[batch_idx]): | |
if not is_identical: | |
continue | |
idx1, idx2 = check_pairs[batch_idx * batch_size + idx] | |
deduplicate_matrix[idx1, idx2] = True | |
deduplicate_matrix[idx2, idx1] = True | |
if idx2 in unique_graph_idx: | |
unique_graph_idx.remove(idx2) | |
ray.shutdown() | |
unique = len(unique_graph_idx) | |
print(f"Unique: {unique}/{N}") | |
unique_ratio = unique / N | |
return unique_ratio, deduplicate_matrix | |
def compute_gen_novel_bk(gen_graph_list, train_graph_list, is_use_ray=False, batch_size=100000): | |
M, N = len(gen_graph_list), len(train_graph_list) | |
deduplicate_matrix = np.zeros((M, N), dtype=bool) | |
pair_0, pair_1 = np.triu_indices_from(deduplicate_matrix, k=1) | |
check_pairs = list(zip(pair_0, pair_1)) | |
non_novel_graph_idx = np.zeros(M, dtype=bool) | |
if not is_use_ray: | |
for idx1, idx2 in tqdm(check_pairs): | |
if non_novel_graph_idx[idx1]: | |
continue | |
is_identical = is_graph_identical(gen_graph_list[idx1], train_graph_list[idx2]) | |
if is_identical: | |
non_novel_graph_idx[idx1] = True | |
deduplicate_matrix[idx1, idx2] = True | |
else: | |
ray.init() | |
N_batch = len(check_pairs) // batch_size | |
futures = [] | |
for i in tqdm(range(N_batch)): | |
batch_pairs = check_pairs[i * batch_size: (i + 1) * batch_size] | |
batch_graph_pair = [(gen_graph_list[idx1], train_graph_list[idx2]) for idx1, idx2 in batch_pairs] | |
futures.append(is_graph_identical_remote.remote(batch_graph_pair)) | |
results = ray.get(futures) | |
for batch_idx in tqdm(range(N_batch)): | |
for idx, is_identical in enumerate(results[batch_idx]): | |
if not is_identical: | |
continue | |
idx1, idx2 = check_pairs[batch_idx * batch_size + idx] | |
deduplicate_matrix[idx1, idx2] = True | |
non_novel_graph_idx[idx1] = True | |
ray.shutdown() | |
novel = M - np.sum(non_novel_graph_idx) | |
print(f"Novel: {novel}/{M}") | |
novel_ratio = novel / M | |
return novel_ratio, deduplicate_matrix | |
def is_graph_identical_list(graph1, graph2_path_list): | |
"""Check if two shapes are identical.""" | |
# Check if the two graphs are isomorphic considering node attributes | |
graph2_list, graph2_prefix_list = load_and_build_graph(graph2_path_list) | |
for graph2 in graph2_list: | |
if nx.is_isomorphic(graph1, graph2, | |
node_match=lambda n1, n2: np.array_equal(n1['shape_geometry'], n2['shape_geometry'])): | |
return True | |
return False | |
is_graph_identical_list_remote = ray.remote(is_graph_identical_list) | |
def test_check(): | |
sample = np.random.rand(3, 32, 32, 3) | |
face1 = sample[[0, 1, 2]] | |
face2 = sample[[0, 2, 1]] | |
faces_adj1 = [[0, 1]] | |
faces_adj2 = [[0, 2]] | |
graph1 = build_graph(face1, faces_adj1) | |
graph2 = build_graph(face2, faces_adj2) | |
is_identical = is_graph_identical(graph1, graph2) | |
# 判断图是否相等 | |
print("Graphs are equal" if is_identical else "Graphs are not equal") | |
def load_data_from_npz(data_npz_file): | |
data_npz = np.load(data_npz_file, allow_pickle=True) | |
data_npz1 = np.load(data_npz_file.replace("deepcad_32", "deepcad_train_v6"), allow_pickle=True) | |
# Brepgen | |
if 'face_edge_adj' in data_npz: | |
faces = data_npz['pred_face'] | |
face_edge_adj = data_npz['face_edge_adj'] | |
faces_adj_pair = [] | |
N = face_edge_adj.shape[0] | |
for face_idx1 in range(N): | |
for face_idx2 in range(face_idx1 + 1, N): | |
face_edges1 = face_edge_adj[face_idx1] | |
face_edges2 = face_edge_adj[face_idx2] | |
if sorted((face_idx1, face_idx2)) in faces_adj_pair: | |
continue | |
if len(set(face_edges1).intersection(set(face_edges2))) > 0: | |
faces_adj_pair.append(sorted((face_idx1, face_idx2))) | |
return faces, faces_adj_pair | |
# Ours | |
if 'sample_points_faces' in data_npz: | |
face_points = data_npz['sample_points_faces'] # Face sample points (num_faces*20*20*3) | |
edge_face_connectivity = data_npz['edge_face_connectivity'] # (num_intersection, (id_edge, id_face1, id_face2)) | |
elif 'pred_face' in data_npz and 'pred_edge_face_connectivity' in data_npz: | |
face_points = data_npz['pred_face'] | |
edge_face_connectivity = data_npz['pred_edge_face_connectivity'] | |
else: | |
raise ValueError("Invalid data format") | |
faces_adj_pair = [] | |
for edge_idx, face_idx1, face_idx2 in edge_face_connectivity: | |
faces_adj_pair.append([face_idx1, face_idx2]) | |
if face_points.shape[-1] != 3: | |
face_points = face_points[..., :3] | |
src_shape = face_points.shape | |
face_points = normalize_pc(face_points.reshape(-1, 3)).reshape(src_shape) | |
return face_points, faces_adj_pair | |
def load_and_build_graph(data_npz_file_list, gen_post_data_root=None, n_bit=4): | |
gen_graph_list = [] | |
prefix_list = [] | |
for data_npz_file in data_npz_file_list: | |
folder_name = os.path.basename(os.path.dirname(data_npz_file)) | |
if gen_post_data_root: | |
step_file_list = load_data_with_prefix(os.path.join(gen_post_data_root, folder_name), ".step") | |
if len(step_file_list) == 0: | |
continue | |
if not check_step_valid_soild(step_file_list[0]): | |
continue | |
prefix_list.append(folder_name) | |
faces, faces_adj_pair = load_data_from_npz(data_npz_file) | |
graph = build_graph(faces, faces_adj_pair, n_bit) | |
gen_graph_list.append(graph) | |
return gen_graph_list, prefix_list | |
load_and_build_graph_remote = ray.remote(load_and_build_graph) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--fake_root", type=str, required=True) | |
parser.add_argument("--fake_post", type=str, required=True) | |
parser.add_argument("--train_root", type=str, required=False) | |
parser.add_argument("--n_bit", type=int, required=False) | |
parser.add_argument("--atol", type=float, required=False) | |
parser.add_argument("--use_ray", action='store_true') | |
parser.add_argument("--load_batch_size", type=int, default=400) | |
parser.add_argument("--compute_batch_size", type=int, default=200000) | |
parser.add_argument("--txt", type=str, default=None) | |
parser.add_argument("--num_cpus", type=int, default=32) | |
parser.add_argument("--min_face", type=int, required=False) | |
parser.add_argument("--only_unique", action='store_true') | |
args = parser.parse_args() | |
gen_data_root = args.fake_root | |
gen_post_data_root = args.fake_post | |
train_data_root = args.train_root | |
is_use_ray = args.use_ray | |
n_bit = args.n_bit | |
atol = args.atol | |
load_batch_size = args.load_batch_size | |
compute_batch_size = args.compute_batch_size | |
folder_list_txt = args.txt | |
num_cpus = args.num_cpus | |
if not n_bit and not atol: | |
raise ValueError("Must set either n_bit or atol") | |
if n_bit and atol: | |
raise ValueError("Cannot set both n_bit and atol") | |
if not args.only_unique and not train_data_root: | |
raise ValueError("Must set train_data_root when not only_unique") | |
if n_bit: | |
atol = None | |
if atol: | |
n_bit = -1 | |
################################################## Unqiue ####################################################### | |
# Load all the generated data files | |
print("Loading generated data files...") | |
gen_data_npz_file_list = load_data_with_prefix(gen_data_root, 'data.npz') | |
if is_use_ray: | |
ray.init() | |
futures = [] | |
gen_graph_list = [] | |
gen_prefix_list = [] | |
for i in tqdm(range(0, len(gen_data_npz_file_list), load_batch_size)): | |
batch_gen_data_npz_file_list = gen_data_npz_file_list[i: i + load_batch_size] | |
futures.append(load_and_build_graph_remote.remote(batch_gen_data_npz_file_list, gen_post_data_root, n_bit)) | |
for future in tqdm(futures): | |
result = ray.get(future) | |
gen_graph_list_batch, gen_prefix_list_batch = result | |
gen_graph_list.extend(gen_graph_list_batch) | |
gen_prefix_list.extend(gen_prefix_list_batch) | |
ray.shutdown() | |
else: | |
gen_graph_list, gen_prefix_list = load_and_build_graph(gen_data_npz_file_list, gen_post_data_root, n_bit) | |
print(f"Loaded {len(gen_graph_list)} generated data files") | |
if args.min_face: | |
graph_node_num = [len(graph.nodes) for graph in gen_graph_list] | |
gen_graph_list = [gen_graph_list[idx] for idx, num in enumerate(graph_node_num) if num >= args.min_face] | |
gen_prefix_list = [gen_prefix_list[idx] for idx, num in enumerate(graph_node_num) if num >= args.min_face] | |
print(f"Filtered sample that face_num < {args.min_face}, remain {len(gen_graph_list)}") | |
print("Computing Unique ratio...") | |
unique_ratio, deduplicate_matrix = compute_gen_unique(gen_graph_list, is_use_ray, compute_batch_size, atol=atol) | |
print(f"Unique ratio: {unique_ratio}") | |
if n_bit == -1: | |
unique_txt = gen_data_root + f"_unique_atol_{atol}_results.txt" | |
else: | |
unique_txt = gen_data_root + f"_unique_{n_bit}bit_results.txt" | |
fp = open(unique_txt, "w") | |
print(f"Unique ratio: {unique_ratio}", file=fp) | |
deduplicate_components = find_connected_components(deduplicate_matrix) | |
for component in deduplicate_components: | |
if len(component) > 1: | |
component = [gen_prefix_list[idx] for idx in component] | |
print(f"Component: {component}", file=fp) | |
print(f"Deduplicate components are saved to {unique_txt}") | |
fp.close() | |
if args.only_unique: | |
exit(0) | |
# For accelerate, please first run the find_nerest.py to find the nearest item in train data for each fake sample | |
################################################### Novel ######################################################## | |
print("Computing Novel ratio...") | |
print("Loading training data files...") | |
# data_npz_file_list = load_data_with_prefix(train_data_root, 'data.npz', folder_list_txt=folder_list_txt) | |
# load_batch_size = load_batch_size * 5 | |
is_identical = np.zeros(len(gen_graph_list), dtype=bool) | |
if is_use_ray: | |
ray.init() | |
futures = [] | |
for gen_graph_idx, gen_graph in enumerate(tqdm(gen_graph_list)): | |
nearest_txt = os.path.join(gen_post_data_root, gen_prefix_list[gen_graph_idx], "nearest.txt") | |
if not os.path.exists(nearest_txt): | |
continue | |
with open(nearest_txt, "r+") as f: | |
lines = f.readlines() | |
train_folders = [os.path.join(train_data_root, line.strip().split(" ")[0], 'data.npz') for line in lines[2:]] | |
futures.append(is_graph_identical_list_remote.remote(gen_graph, train_folders)) | |
results = ray.get(futures) | |
for gen_graph_idx, result in enumerate(results): | |
is_identical[gen_graph_idx] = result | |
ray.shutdown() | |
else: | |
pbar = tqdm(gen_graph_list) | |
for gen_graph_idx, gen_graph in enumerate(pbar): | |
nearest_txt = os.path.join(gen_post_data_root, gen_prefix_list[gen_graph_idx], "nearest.txt") | |
if not os.path.exists(nearest_txt): | |
continue | |
with open(nearest_txt, "r+") as f: | |
lines = f.readlines() | |
train_folders = [os.path.join(train_data_root, line.strip().split(" ")[0], 'data.npz') for line in lines[2:]] | |
is_identical[gen_graph_idx] = is_graph_identical_list(gen_graph, train_folders) | |
pbar.set_postfix({"novel_count": np.sum(~is_identical)}) | |
identical_folder = np.array(gen_prefix_list)[is_identical] | |
print(f"Novel ratio: {np.sum(~is_identical) / len(gen_graph_list)}") | |
novel_txt = gen_data_root + f"_novel_{n_bit}bit_results.txt" | |
with open(novel_txt, "w") as f: | |
f.write(f"Novel ratio: {np.sum(~is_identical) / len(gen_graph_list)}\n") | |
for folder in identical_folder: | |
f.write(folder + "\n") | |
print("Done") | |
if __name__ == "__main__": | |
main() | |