LGGM-Text2Graph / models /transformer_model.py
YuWang0103's picture
Upload 41 files
6b59850 verified
raw
history blame
11.4 kB
import math
import torch
import torch.nn as nn
from torch.nn.modules.dropout import Dropout
from torch.nn.modules.linear import Linear
from torch.nn.modules.normalization import LayerNorm
from torch.nn import functional as F
from torch import Tensor
import utils
from diffusion import diffusion_utils
from models.layers import Xtoy, Etoy, masked_softmax
class XEyTransformerLayer(nn.Module):
""" Transformer that updates node, edge and global features
d_x: node features
d_e: edge features
dz : global features
n_head: the number of heads in the multi_head_attention
dim_feedforward: the dimension of the feedforward network model after self-attention
dropout: dropout probablility. 0 to disable
layer_norm_eps: eps value in layer normalizations.
"""
def __init__(self, dx: int, de: int, dy: int, n_head: int, dim_ffX: int = 2048,
dim_ffE: int = 128, dim_ffy: int = 2048, dropout: float = 0.1,
layer_norm_eps: float = 1e-5, device=None, dtype=None) -> None:
kw = {'device': device, 'dtype': dtype}
super().__init__()
self.self_attn = NodeEdgeBlock(dx, de, dy, n_head, **kw)
self.linX1 = Linear(dx, dim_ffX, **kw)
self.linX2 = Linear(dim_ffX, dx, **kw)
self.normX1 = LayerNorm(dx, eps=layer_norm_eps, **kw)
self.normX2 = LayerNorm(dx, eps=layer_norm_eps, **kw)
self.dropoutX1 = Dropout(dropout)
self.dropoutX2 = Dropout(dropout)
self.dropoutX3 = Dropout(dropout)
self.linE1 = Linear(de, dim_ffE, **kw)
self.linE2 = Linear(dim_ffE, de, **kw)
self.normE1 = LayerNorm(de, eps=layer_norm_eps, **kw)
self.normE2 = LayerNorm(de, eps=layer_norm_eps, **kw)
self.dropoutE1 = Dropout(dropout)
self.dropoutE2 = Dropout(dropout)
self.dropoutE3 = Dropout(dropout)
self.lin_y1 = Linear(dy, dim_ffy, **kw)
self.lin_y2 = Linear(dim_ffy, dy, **kw)
self.norm_y1 = LayerNorm(dy, eps=layer_norm_eps, **kw)
self.norm_y2 = LayerNorm(dy, eps=layer_norm_eps, **kw)
self.dropout_y1 = Dropout(dropout)
self.dropout_y2 = Dropout(dropout)
self.dropout_y3 = Dropout(dropout)
self.activation = F.relu
def forward(self, X: Tensor, E: Tensor, y, node_mask: Tensor):
""" Pass the input through the encoder layer.
X: (bs, n, d)
E: (bs, n, n, d)
y: (bs, dy)
node_mask: (bs, n) Mask for the src keys per batch (optional)
Output: newX, newE, new_y with the same shape.
"""
newX, newE, new_y = self.self_attn(X, E, y, node_mask=node_mask)
newX_d = self.dropoutX1(newX)
X = self.normX1(X + newX_d)
newE_d = self.dropoutE1(newE)
E = self.normE1(E + newE_d)
new_y_d = self.dropout_y1(new_y)
y = self.norm_y1(y + new_y_d)
ff_outputX = self.linX2(self.dropoutX2(self.activation(self.linX1(X))))
ff_outputX = self.dropoutX3(ff_outputX)
X = self.normX2(X + ff_outputX)
ff_outputE = self.linE2(self.dropoutE2(self.activation(self.linE1(E))))
ff_outputE = self.dropoutE3(ff_outputE)
E = self.normE2(E + ff_outputE)
ff_output_y = self.lin_y2(self.dropout_y2(self.activation(self.lin_y1(y))))
ff_output_y = self.dropout_y3(ff_output_y)
y = self.norm_y2(y + ff_output_y)
return X, E, y
class NodeEdgeBlock(nn.Module):
""" Self attention layer that also updates the representations on the edges. """
def __init__(self, dx, de, dy, n_head, **kwargs):
super().__init__()
assert dx % n_head == 0, f"dx: {dx} -- nhead: {n_head}"
self.dx = dx
self.de = de
self.dy = dy
self.df = int(dx / n_head)
self.n_head = n_head
# Attention
self.q = Linear(dx, dx)
self.k = Linear(dx, dx)
self.v = Linear(dx, dx)
# FiLM E to X
self.e_add = Linear(de, dx)
self.e_mul = Linear(de, dx)
# FiLM y to E
self.y_e_mul = Linear(dy, dx) # Warning: here it's dx and not de
self.y_e_add = Linear(dy, dx)
# FiLM y to X
self.y_x_mul = Linear(dy, dx)
self.y_x_add = Linear(dy, dx)
# Process y
self.y_y = Linear(dy, dy)
self.x_y = Xtoy(dx, dy)
self.e_y = Etoy(de, dy)
# Output layers
self.x_out = Linear(dx, dx)
self.e_out = Linear(dx, de)
self.y_out = nn.Sequential(nn.Linear(dy, dy), nn.ReLU(), nn.Linear(dy, dy))
def forward(self, X, E, y, node_mask):
"""
:param X: bs, n, d node features
:param E: bs, n, n, d edge features
:param y: bs, dz global features
:param node_mask: bs, n
:return: newX, newE, new_y with the same shape.
"""
bs, n, _ = X.shape
x_mask = node_mask.unsqueeze(-1) # bs, n, 1
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
# 1. Map X to keys and queries
Q = self.q(X) * x_mask # (bs, n, dx)
K = self.k(X) * x_mask # (bs, n, dx)
diffusion_utils.assert_correctly_masked(Q, x_mask)
# 2. Reshape to (bs, n, n_head, df) with dx = n_head * df
Q = Q.reshape((Q.size(0), Q.size(1), self.n_head, self.df))
K = K.reshape((K.size(0), K.size(1), self.n_head, self.df))
Q = Q.unsqueeze(2) # (bs, 1, n, n_head, df)
K = K.unsqueeze(1) # (bs, n, 1, n head, df)
# Compute unnormalized attentions. Y is (bs, n, n, n_head, df)
Y = Q * K
Y = Y / math.sqrt(Y.size(-1))
diffusion_utils.assert_correctly_masked(Y, (e_mask1 * e_mask2).unsqueeze(-1))
E1 = self.e_mul(E) * e_mask1 * e_mask2 # bs, n, n, dx
E1 = E1.reshape((E.size(0), E.size(1), E.size(2), self.n_head, self.df))
E2 = self.e_add(E) * e_mask1 * e_mask2 # bs, n, n, dx
E2 = E2.reshape((E.size(0), E.size(1), E.size(2), self.n_head, self.df))
# Incorporate edge features to the self attention scores.
Y = Y * (E1 + 1) + E2 # (bs, n, n, n_head, df)
# Incorporate y to E
newE = Y.flatten(start_dim=3) # bs, n, n, dx
ye1 = self.y_e_add(y).unsqueeze(1).unsqueeze(1) # bs, 1, 1, de
ye2 = self.y_e_mul(y).unsqueeze(1).unsqueeze(1)
newE = ye1 + (ye2 + 1) * newE
# Output E
newE = self.e_out(newE) * e_mask1 * e_mask2 # bs, n, n, de
diffusion_utils.assert_correctly_masked(newE, e_mask1 * e_mask2)
# Compute attentions. attn is still (bs, n, n, n_head, df)
softmax_mask = e_mask2.expand(-1, n, -1, self.n_head) # bs, 1, n, 1
attn = masked_softmax(Y, softmax_mask, dim=2) # bs, n, n, n_head
V = self.v(X) * x_mask # bs, n, dx
V = V.reshape((V.size(0), V.size(1), self.n_head, self.df))
V = V.unsqueeze(1) # (bs, 1, n, n_head, df)
# Compute weighted values
weighted_V = attn * V
weighted_V = weighted_V.sum(dim=2)
# Send output to input dim
weighted_V = weighted_V.flatten(start_dim=2) # bs, n, dx
# Incorporate y to X
yx1 = self.y_x_add(y).unsqueeze(1)
yx2 = self.y_x_mul(y).unsqueeze(1)
newX = yx1 + (yx2 + 1) * weighted_V
# Output X
newX = self.x_out(newX) * x_mask
diffusion_utils.assert_correctly_masked(newX, x_mask)
# Process y based on X axnd E
y = self.y_y(y)
e_y = self.e_y(E)
x_y = self.x_y(X)
new_y = y + x_y + e_y
new_y = self.y_out(new_y) # bs, dy
return newX, newE, new_y
class GraphTransformer(nn.Module):
"""
n_layers : int -- number of layers
dims : dict -- contains dimensions for each feature type
"""
def __init__(self, n_layers: int, input_dims: dict, cond_dims: int, hidden_mlp_dims: dict, hidden_dims: dict,
output_dims: dict, act_fn_in: nn.ReLU(), act_fn_out: nn.ReLU()):
super().__init__()
self.n_layers = n_layers
self.out_dim_X = output_dims['X']
self.out_dim_E = output_dims['E']
self.out_dim_y = output_dims['y']
self.mlp_in_X = nn.Sequential(nn.Linear(input_dims['X'] + cond_dims, hidden_mlp_dims['X']), act_fn_in,
nn.Linear(hidden_mlp_dims['X'], hidden_dims['dx']), act_fn_in)
self.mlp_in_E = nn.Sequential(nn.Linear(input_dims['E'] + cond_dims, hidden_mlp_dims['E']), act_fn_in,
nn.Linear(hidden_mlp_dims['E'], hidden_dims['de']), act_fn_in)
self.mlp_in_y = nn.Sequential(nn.Linear(input_dims['y'], hidden_mlp_dims['y']), act_fn_in,
nn.Linear(hidden_mlp_dims['y'], hidden_dims['dy']), act_fn_in)
self.tf_layers = nn.ModuleList([XEyTransformerLayer(dx=hidden_dims['dx'],
de=hidden_dims['de'],
dy=hidden_dims['dy'],
n_head=hidden_dims['n_head'],
dim_ffX=hidden_dims['dim_ffX'],
dim_ffE=hidden_dims['dim_ffE'])
for i in range(n_layers)])
self.mlp_out_X = nn.Sequential(nn.Linear(hidden_dims['dx'], hidden_mlp_dims['X']), act_fn_out,
nn.Linear(hidden_mlp_dims['X'], output_dims['X']))
self.mlp_out_E = nn.Sequential(nn.Linear(hidden_dims['de'], hidden_mlp_dims['E']), act_fn_out,
nn.Linear(hidden_mlp_dims['E'], output_dims['E']))
self.mlp_out_y = nn.Sequential(nn.Linear(hidden_dims['dy'], hidden_mlp_dims['y']), act_fn_out,
nn.Linear(hidden_mlp_dims['y'], output_dims['y']))
def forward(self, X, E, y, node_mask):
bs, n = X.shape[0], X.shape[1]
diag_mask = torch.eye(n)
diag_mask = ~diag_mask.type_as(E).bool()
diag_mask = diag_mask.unsqueeze(0).unsqueeze(-1).expand(bs, -1, -1, -1)
X_to_out = X[..., :self.out_dim_X]
E_to_out = E[..., :self.out_dim_E]
y_to_out = y[..., :self.out_dim_y]
new_E = self.mlp_in_E(E)
new_E = (new_E + new_E.transpose(1, 2)) / 2
after_in = utils.PlaceHolder(X=self.mlp_in_X(X), E=new_E, y=self.mlp_in_y(y)).mask(node_mask)
X, E, y = after_in.X, after_in.E, after_in.y
for layer in self.tf_layers:
X, E, y = layer(X, E, y, node_mask)
X = self.mlp_out_X(X)
E = self.mlp_out_E(E)
y = self.mlp_out_y(y)
X = (X + X_to_out)
E = (E + E_to_out) * diag_mask
y = y + y_to_out
E = 1/2 * (E + torch.transpose(E, 1, 2))
return utils.PlaceHolder(X=X, E=E, y=y).mask(node_mask)