Yiting1009's picture
Upload 26 files
5d87992
# Copyright Niantic 2021. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the ManyDepth licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
import os
import time
import json
import argparse
import numpy as np
from PIL import Image
import matplotlib as mpl
import matplotlib.cm as cm
import torch
from torch import Tensor
import torchvision
from torchvision import transforms
import torch.nn.functional as F
from src.networks import *
from utils import transformation_from_parameters, disp_to_depth, line
def load_and_preprocess_image(image, resize_width, resize_height):
image_ori = image.convert('RGB')
W, H = image_ori.size
W_resized = W - W % 32
H_resized = H - H % 32
img_ori_npy = np.array(image_ori)[0:H_resized, 0:W_resized]
image = image_ori.resize((resize_width, resize_height), Image.Resampling.LANCZOS)
image = transforms.ToTensor()(image)
image_ori = transforms.ToTensor()(img_ori_npy).unsqueeze(0)
image = line(image).unsqueeze(0)
if torch.cuda.is_available():
return image_ori.cuda(), image.cuda(), (H, W)
return image_ori, image, (H, W)
def load_and_preprocess_intrinsics(intrinsics_path, resize_width, resize_height):
K = np.eye(4)
with open(intrinsics_path, 'r') as f:
K[:3, :3] = np.array(json.load(f))
# Convert normalised intrinsics to 1/4 size unnormalised intrinsics.
# (The cost volume construction expects the intrinsics corresponding to 1/4 size images)
K[0, :] *= resize_width // 4
K[1, :] *= resize_height // 4
invK = torch.Tensor(np.linalg.pinv(K)).unsqueeze(0)
K = torch.Tensor(K).unsqueeze(0)
if torch.cuda.is_available():
return K.cuda(), invK.cuda()
return K, invK
def tensor2img(img: Tensor) -> np.ndarray:
return (255.0 * img.permute(1, 2, 0).cpu().detach().numpy()).astype(np.uint8)
def test_simple(image: Image):
"""Function to predict for a single image or folder of images
"""
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# Loading pretrained model
encoder_dict = torch.load("src/weights/encoder.pth", map_location=device)
encoder = ResnetEncoderMatching(18, False,
input_width=encoder_dict['width'],
input_height=encoder_dict['height'],
adaptive_bins=True,
min_depth_bin=encoder_dict['min_depth_bin'],
max_depth_bin=encoder_dict['max_depth_bin'],
depth_binning='linear',
num_depth_bins=96)
filtered_dict_enc = {k: v for k, v in encoder_dict.items() if k in encoder.state_dict()}
encoder.load_state_dict(filtered_dict_enc)
depth_decoder = DepthDecoder(num_ch_enc=encoder.num_ch_enc, scales=range(4))
loaded_dict = torch.load("src/weights/depth.pth", map_location=device)
depth_decoder.load_state_dict(loaded_dict)
pose_enc_dict = torch.load("src/weights/pose_encoder.pth", map_location=device)
pose_dec_dict = torch.load("src/weights/pose.pth", map_location=device)
pose_enc = ResnetEncoder(18, False, num_input_images=2)
pose_dec = PoseDecoder(pose_enc.num_ch_enc,
num_input_features=1,
num_frames_to_predict_for=2)
pose_enc.load_state_dict(pose_enc_dict, strict=True)
pose_dec.load_state_dict(pose_dec_dict, strict=True)
restoration_dict = torch.load("src/weights/uie_model.pth", map_location=device)
uie_model = MainModel()
uie_model.load_state_dict(restoration_dict, strict=False)
# Setting states of networks
encoder.eval()
depth_decoder.eval()
pose_enc.eval()
pose_dec.eval()
uie_model.eval()
if torch.cuda.is_available():
encoder.cuda()
depth_decoder.cuda()
pose_enc.cuda()
pose_dec.cuda()
uie_model.cuda()
# Load input data
input_image_ori, input_image, original_size = load_and_preprocess_image(image,
resize_width=encoder_dict['width'],
resize_height=encoder_dict['height'])
source_image_ori, source_image, _ = load_and_preprocess_image(image,
resize_width=encoder_dict['width'],
resize_height=encoder_dict['height'])
K, invK = load_and_preprocess_intrinsics('canyons_intrinsics.json',
resize_width=encoder_dict['width'],
resize_height=encoder_dict['height'])
with torch.no_grad():
# Estimate poses
pose_inputs = [source_image, input_image]
pose_inputs = [pose_enc(torch.cat(pose_inputs, 1))]
axisangle, translation = pose_dec(pose_inputs)
pose = transformation_from_parameters(axisangle[:, 0], translation[:, 0], invert=True)
pose *= 0 # zero poses are a signal to the encoder not to construct a cost volume
source_image *= 0
# Estimate depth
output, lowest_cost, _ = encoder(current_image=input_image,
lookup_images=source_image.unsqueeze(1),
poses=pose.unsqueeze(1),
K=K,
invK=invK,
min_depth_bin=encoder_dict['min_depth_bin'],
max_depth_bin=encoder_dict['max_depth_bin'])
output = depth_decoder(output)
sigmoid_output = output[("disp", 0)]
_, depth_output = disp_to_depth(sigmoid_output, min_depth=0.1, max_depth=20)
sigmoid_output_resized = F.interpolate(
sigmoid_output, original_size, mode="bilinear", align_corners=False)
sigmoid_output_resized = sigmoid_output_resized.cpu().numpy()[:, 0]
depth = F.interpolate(
depth_output, input_image_ori.shape[2:], mode="bilinear", align_corners=False)
beta, J, A = uie_model(input_image_ori)
beta[0] = 5.0 * beta[0]
beta[1] = 5.0 * beta[1]
t1 = torch.exp(-beta[0] * depth)
D1 = J * t1
B1 = (1 - torch.exp(-beta[1] * depth)) * A
I_rec = D1 + B1
J_out = Image.open(tensor2img(J[0]))
return J_out