|
""" |
|
A model worker executes the model based on Cacheflow. |
|
|
|
Install Cacheflow first. Then, assuming controller is live: |
|
1. ray start --head |
|
2. python3 -m fastchat.serve.cacheflow_worker --model-path path_to_vicuna |
|
|
|
launch Gradio: |
|
3. python3 -m fastchat.serve.gradio_web_server --concurrency-count 10000 |
|
""" |
|
import argparse |
|
import asyncio |
|
import json |
|
import threading |
|
import time |
|
import uuid |
|
from typing import List, Dict |
|
|
|
import requests |
|
import torch |
|
import uvicorn |
|
from fastapi import FastAPI, Request, BackgroundTasks |
|
from fastapi.responses import StreamingResponse |
|
from transformers import AutoTokenizer |
|
|
|
from cacheflow.master.server import Server, initialize_ray_cluster |
|
from cacheflow.sampling_params import SamplingParams |
|
from cacheflow.sequence import Sequence, SequenceGroup |
|
from cacheflow.utils import Counter, get_gpu_memory, get_cpu_memory |
|
from fastchat.constants import WORKER_HEART_BEAT_INTERVAL |
|
from fastchat.utils import build_logger, pretty_print_semaphore |
|
|
|
GB = 1 << 30 |
|
TIMEOUT_TO_PREVENT_DEADLOCK = 1 |
|
|
|
worker_id = str(uuid.uuid4())[:6] |
|
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") |
|
global_counter = 0 |
|
seed = torch.cuda.current_device() |
|
|
|
|
|
def heart_beat_worker(controller): |
|
while True: |
|
time.sleep(WORKER_HEART_BEAT_INTERVAL) |
|
controller.send_heart_beat() |
|
|
|
|
|
class CacheFlowWorker: |
|
def __init__( |
|
self, |
|
controller_addr, |
|
worker_addr, |
|
worker_id, |
|
no_register, |
|
model_path, |
|
model_name, |
|
block_size, |
|
seed, |
|
swap_space, |
|
max_num_batched_tokens, |
|
distributed_init_method, |
|
all_stage_devices, |
|
): |
|
self.controller_addr = controller_addr |
|
self.worker_addr = worker_addr |
|
self.worker_id = worker_id |
|
if model_path.endswith("/"): |
|
model_path = model_path[:-1] |
|
self.model_name = model_name or model_path.split("/")[-1] |
|
|
|
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") |
|
self.block_size = block_size |
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) |
|
self.seq_group_counter = Counter() |
|
self.seq_counter = Counter() |
|
|
|
self.context_len = 2048 |
|
|
|
|
|
|
|
remote_server_class = Server |
|
self.server = remote_server_class( |
|
model=self.model_name, |
|
model_path=model_path, |
|
pipeline_parallel_size=1, |
|
tensor_parallel_size=1, |
|
block_size=block_size, |
|
dtype=torch.float16, |
|
seed=seed, |
|
swap_space=swap_space, |
|
max_num_batched_tokens=max_num_batched_tokens, |
|
num_nodes=1, |
|
num_devices_per_node=4, |
|
distributed_init_method=distributed_init_method, |
|
all_stage_devices=all_stage_devices, |
|
gpu_memory=get_gpu_memory(), |
|
cpu_memory=get_cpu_memory(), |
|
) |
|
self.running_seq_groups: Dict[int, SequenceGroup] = {} |
|
self.sequence_group_events: Dict[int, asyncio.Event] = {} |
|
self.is_server_running = False |
|
|
|
if not no_register: |
|
self.register_to_controller() |
|
self.heart_beat_thread = threading.Thread( |
|
target=heart_beat_worker, args=(self,) |
|
) |
|
self.heart_beat_thread.start() |
|
|
|
def register_to_controller(self): |
|
logger.info("Register to controller") |
|
|
|
url = self.controller_addr + "/register_worker" |
|
data = { |
|
"worker_name": self.worker_addr, |
|
"check_heart_beat": True, |
|
"worker_status": self.get_status(), |
|
} |
|
r = requests.post(url, json=data) |
|
assert r.status_code == 200 |
|
|
|
def send_heart_beat(self): |
|
logger.info( |
|
f"Send heart beat. Models: {[self.model_name]}. " |
|
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " |
|
f"global_counter: {global_counter}" |
|
) |
|
|
|
url = self.controller_addr + "/receive_heart_beat" |
|
|
|
while True: |
|
try: |
|
ret = requests.post( |
|
url, |
|
json={ |
|
"worker_name": self.worker_addr, |
|
"queue_length": self.get_queue_length(), |
|
}, |
|
timeout=5, |
|
) |
|
exist = ret.json()["exist"] |
|
break |
|
except requests.exceptions.RequestException as e: |
|
logger.error(f"heart beat error: {e}") |
|
time.sleep(5) |
|
|
|
if not exist: |
|
self.register_to_controller() |
|
|
|
def get_queue_length(self): |
|
if ( |
|
model_semaphore is None |
|
or model_semaphore._value is None |
|
or model_semaphore._waiters is None |
|
): |
|
return 0 |
|
else: |
|
return ( |
|
args.limit_model_concurrency |
|
- model_semaphore._value |
|
+ len(model_semaphore._waiters) |
|
) |
|
|
|
def get_status(self): |
|
return { |
|
"model_names": [self.model_name], |
|
"speed": 1, |
|
"queue_length": self.get_queue_length(), |
|
} |
|
|
|
async def server_step(self): |
|
self.is_server_running = True |
|
updated_seq_groups = self.server.step() |
|
self.is_server_running = False |
|
|
|
for seq_group in updated_seq_groups: |
|
group_id = seq_group.group_id |
|
self.running_seq_groups[group_id] = seq_group |
|
self.sequence_group_events[group_id].set() |
|
|
|
async def generate_stream(self, params): |
|
tokenizer = self.tokenizer |
|
context = params["prompt"] |
|
temperature = float(params.get("temperature", 1.0)) |
|
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) |
|
stop_str = params.get("stop", None) |
|
|
|
input_ids = tokenizer(context).input_ids |
|
max_src_len = self.context_len - max_new_tokens - 8 |
|
input_ids = input_ids[-max_src_len:] |
|
|
|
|
|
sampling_params = SamplingParams.from_dict(params) |
|
sampling_params.stop_token_ids.add(tokenizer.eos_token_id) |
|
sampling_params.n = 1 |
|
sampling_params.max_num_steps = max_new_tokens |
|
sampling_params.temperature = temperature |
|
if stop_str is not None: |
|
sampling_params.stop_str = stop_str |
|
|
|
seqs: List[Sequence] = [] |
|
for _ in range(sampling_params.n): |
|
seq_id = next(self.seq_counter) |
|
seq = Sequence(seq_id, input_ids, block_size=self.block_size) |
|
seqs.append(seq) |
|
|
|
arrival_time = time.time() |
|
group_id = next(self.seq_group_counter) |
|
|
|
seq_group = SequenceGroup(group_id, seqs, arrival_time) |
|
group_event = asyncio.Event() |
|
self.running_seq_groups[group_id] = seq_group |
|
self.sequence_group_events[group_id] = group_event |
|
self.server.add_sequence_groups([(seq_group, sampling_params)]) |
|
while True: |
|
if not self.is_server_running: |
|
await self.server_step() |
|
try: |
|
await asyncio.wait_for( |
|
group_event.wait(), timeout=TIMEOUT_TO_PREVENT_DEADLOCK |
|
) |
|
except: |
|
pass |
|
group_event.clear() |
|
seq_group = self.running_seq_groups[group_id] |
|
all_outputs = [] |
|
for seq in seq_group.seqs: |
|
token_ids = seq.get_token_ids() |
|
output = self.tokenizer.decode(token_ids, skip_special_tokens=True) |
|
if stop_str is not None: |
|
if output.endswith(stop_str): |
|
output = output[: -len(stop_str)] |
|
all_outputs.append(output) |
|
assert len(seq_group.seqs) == 1 |
|
ret = { |
|
"text": all_outputs[0], |
|
"error_code": 0, |
|
} |
|
yield (json.dumps(ret) + "\0").encode("utf-8") |
|
if seq_group.is_finished(): |
|
del self.running_seq_groups[group_id] |
|
del self.sequence_group_events[group_id] |
|
break |
|
|
|
|
|
app = FastAPI() |
|
model_semaphore = None |
|
|
|
|
|
def release_model_semaphore(): |
|
model_semaphore.release() |
|
|
|
|
|
@app.post("/worker_generate_stream") |
|
async def generate_stream(request: Request): |
|
global model_semaphore, global_counter |
|
global_counter += 1 |
|
params = await request.json() |
|
|
|
if model_semaphore is None: |
|
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) |
|
await model_semaphore.acquire() |
|
background_tasks = BackgroundTasks() |
|
background_tasks.add_task(release_model_semaphore) |
|
|
|
return StreamingResponse( |
|
worker.generate_stream(params), background=background_tasks |
|
) |
|
|
|
|
|
@app.post("/worker_get_status") |
|
async def get_status(request: Request): |
|
return worker.get_status() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--host", type=str, default="localhost") |
|
parser.add_argument("--port", type=int, default=21002) |
|
parser.add_argument("--worker-address", type=str, default="http://localhost:21002") |
|
parser.add_argument( |
|
"--controller-address", type=str, default="http://localhost:21001" |
|
) |
|
parser.add_argument( |
|
"--model-path", type=str, default="/home/haozhang/weights/hf-llama-7b" |
|
) |
|
parser.add_argument("--model-name", type=str) |
|
parser.add_argument("--limit-model-concurrency", type=int, default=1024) |
|
parser.add_argument("--stream-interval", type=int, default=2) |
|
parser.add_argument("--no-register", action="store_true") |
|
|
|
parser.add_argument( |
|
"--block-size", type=int, default=8, choices=[8, 16], help="token block size" |
|
) |
|
parser.add_argument( |
|
"--swap-space", type=int, default=20, help="CPU swap space size (GiB) per GPU" |
|
) |
|
parser.add_argument( |
|
"--max-num-batched-tokens", |
|
type=int, |
|
default=2560, |
|
help="maximum number of batched tokens", |
|
) |
|
args = parser.parse_args() |
|
|
|
( |
|
num_nodes, |
|
num_devices_per_node, |
|
distributed_init_method, |
|
all_stage_devices, |
|
) = initialize_ray_cluster(pipeline_parallel_size=1, tensor_parallel_size=1) |
|
|
|
worker = CacheFlowWorker( |
|
args.controller_address, |
|
args.worker_address, |
|
worker_id, |
|
args.no_register, |
|
args.model_path, |
|
args.model_name, |
|
args.block_size, |
|
seed, |
|
args.swap_space, |
|
args.max_num_batched_tokens, |
|
distributed_init_method, |
|
all_stage_devices, |
|
) |
|
uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
|
|