|
import datetime |
|
import logging |
|
import logging.handlers |
|
import os |
|
import sys |
|
import json |
|
|
|
import requests |
|
import torch |
|
|
|
from fastchat.constants import LOGDIR |
|
|
|
server_error_msg = ( |
|
"**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" |
|
) |
|
moderation_msg = ( |
|
"YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." |
|
) |
|
|
|
handler = None |
|
|
|
|
|
def build_logger(logger_name, logger_filename): |
|
global handler |
|
|
|
formatter = logging.Formatter( |
|
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
) |
|
|
|
|
|
if not logging.getLogger().handlers: |
|
logging.basicConfig(level=logging.INFO, encoding="utf-8") |
|
logging.getLogger().handlers[0].setFormatter(formatter) |
|
|
|
|
|
stdout_logger = logging.getLogger("stdout") |
|
stdout_logger.setLevel(logging.INFO) |
|
sl = StreamToLogger(stdout_logger, logging.INFO) |
|
sys.stdout = sl |
|
|
|
stderr_logger = logging.getLogger("stderr") |
|
stderr_logger.setLevel(logging.ERROR) |
|
sl = StreamToLogger(stderr_logger, logging.ERROR) |
|
sys.stderr = sl |
|
|
|
|
|
logger = logging.getLogger(logger_name) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
if handler is None: |
|
os.makedirs(LOGDIR, exist_ok=True) |
|
filename = os.path.join(LOGDIR, logger_filename) |
|
handler = logging.handlers.TimedRotatingFileHandler( |
|
filename, when="D", utc=True |
|
) |
|
handler.setFormatter(formatter) |
|
|
|
for name, item in logging.root.manager.loggerDict.items(): |
|
if isinstance(item, logging.Logger): |
|
item.addHandler(handler) |
|
|
|
return logger |
|
|
|
|
|
class StreamToLogger(object): |
|
""" |
|
Fake file-like stream object that redirects writes to a logger instance. |
|
""" |
|
|
|
def __init__(self, logger, log_level=logging.INFO): |
|
self.terminal = sys.stdout |
|
self.logger = logger |
|
self.log_level = log_level |
|
self.linebuf = "" |
|
|
|
def __getattr__(self, attr): |
|
return getattr(self.terminal, attr) |
|
|
|
def write(self, buf): |
|
temp_linebuf = self.linebuf + buf |
|
self.linebuf = "" |
|
for line in temp_linebuf.splitlines(True): |
|
|
|
|
|
|
|
|
|
|
|
if line[-1] == "\n": |
|
encoded_message = line.encode("utf-8", "ignore").decode("utf-8") |
|
self.logger.log(self.log_level, encoded_message.rstrip()) |
|
else: |
|
self.linebuf += line |
|
|
|
def flush(self): |
|
if self.linebuf != "": |
|
encoded_message = self.linebuf.encode("utf-8", "ignore").decode("utf-8") |
|
self.logger.log(self.log_level, encoded_message.rstrip()) |
|
self.linebuf = "" |
|
|
|
|
|
def disable_torch_init(): |
|
""" |
|
Disable the redundant torch default initialization to accelerate model creation. |
|
""" |
|
import torch |
|
|
|
setattr(torch.nn.Linear, "reset_parameters", lambda self: None) |
|
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) |
|
|
|
|
|
def violates_moderation(text): |
|
""" |
|
Check whether the text violates OpenAI moderation API. |
|
""" |
|
url = "https://api.openai.com/v1/moderations" |
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"], |
|
} |
|
text = text.replace("\n", "") |
|
data = "{" + '"input": ' + f'"{text}"' + "}" |
|
data = data.encode("utf-8") |
|
try: |
|
ret = requests.post(url, headers=headers, data=data, timeout=5) |
|
flagged = ret.json()["results"][0]["flagged"] |
|
except requests.exceptions.RequestException as e: |
|
flagged = False |
|
except KeyError as e: |
|
flagged = False |
|
|
|
return flagged |
|
|
|
|
|
|
|
|
|
def clean_flant5_ckpt(ckpt_path): |
|
index_file = os.path.join(ckpt_path, "pytorch_model.bin.index.json") |
|
index_json = json.load(open(index_file, "r")) |
|
|
|
weightmap = index_json["weight_map"] |
|
|
|
share_weight_file = weightmap["shared.weight"] |
|
share_weight = torch.load(os.path.join(ckpt_path, share_weight_file))[ |
|
"shared.weight" |
|
] |
|
|
|
for weight_name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]: |
|
weight_file = weightmap[weight_name] |
|
weight = torch.load(os.path.join(ckpt_path, weight_file)) |
|
weight[weight_name] = share_weight |
|
torch.save(weight, os.path.join(ckpt_path, weight_file)) |
|
|
|
|
|
def pretty_print_semaphore(semaphore): |
|
if semaphore is None: |
|
return "None" |
|
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" |
|
|