|
|
|
|
|
import argparse |
|
from pathlib import Path |
|
|
|
import chatglm_cpp |
|
import gradio as gr |
|
|
|
import urllib |
|
|
|
DEFAULT_MODEL_PATH = "chatglm3-6b.bin" |
|
|
|
testfile = urllib.URLopener() |
|
testfile.retrieve( |
|
"https://huggingface.co/Braddy/chatglm3-6b-chitchat/resolve/main/q5_1.bin?download=true", |
|
DEFAULT_MODEL_PATH |
|
) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-m", "--model", default=DEFAULT_MODEL_PATH, type=Path, help="model path") |
|
parser.add_argument("--mode", default="chat", type=str, choices=["chat", "generate"], help="inference mode") |
|
parser.add_argument("-l", "--max_length", default=2048, type=int, help="max total length including prompt and output") |
|
parser.add_argument("-c", "--max_context_length", default=512, type=int, help="max context length") |
|
parser.add_argument("--top_k", default=0, type=int, help="top-k sampling") |
|
parser.add_argument("--top_p", default=0.7, type=float, help="top-p sampling") |
|
parser.add_argument("--temp", default=0.95, type=float, help="temperature") |
|
parser.add_argument("--repeat_penalty", default=1.0, type=float, help="penalize repeat sequence of tokens") |
|
parser.add_argument("-t", "--threads", default=0, type=int, help="number of threads for inference") |
|
parser.add_argument("--plain", action="store_true", help="display in plain text without markdown support") |
|
args = parser.parse_args() |
|
|
|
pipeline = chatglm_cpp.Pipeline(args.model) |
|
|
|
|
|
def postprocess(text): |
|
if args.plain: |
|
return f"<pre>{text}</pre>" |
|
return text |
|
|
|
|
|
def predict(input, chatbot, max_length, top_p, temperature, messages): |
|
chatbot.append((postprocess(input), "")) |
|
messages.append(chatglm_cpp.ChatMessage(role="user", content=input)) |
|
|
|
generation_kwargs = dict( |
|
max_length=max_length, |
|
max_context_length=args.max_context_length, |
|
do_sample=temperature > 0, |
|
top_k=args.top_k, |
|
top_p=top_p, |
|
temperature=temperature, |
|
repetition_penalty=args.repeat_penalty, |
|
num_threads=args.threads, |
|
stream=True, |
|
) |
|
|
|
response = "" |
|
if args.mode == "chat": |
|
chunks = [] |
|
for chunk in pipeline.chat(messages, **generation_kwargs): |
|
response += chunk.content |
|
chunks.append(chunk) |
|
chatbot[-1] = (chatbot[-1][0], postprocess(response)) |
|
yield chatbot, messages |
|
messages.append(pipeline.merge_streaming_messages(chunks)) |
|
else: |
|
for chunk in pipeline.generate(input, **generation_kwargs): |
|
response += chunk |
|
chatbot[-1] = (chatbot[-1][0], postprocess(response)) |
|
yield chatbot, messages |
|
|
|
yield chatbot, messages |
|
|
|
|
|
def reset_user_input(): |
|
return gr.update(value="") |
|
|
|
|
|
def reset_state(): |
|
return [], [] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML("""<h1 align="center">ChatGLM.cpp</h1>""") |
|
|
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
with gr.Column(scale=4): |
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=8) |
|
submitBtn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
max_length = gr.Slider(0, 2048, value=args.max_length, step=1.0, label="Maximum Length", interactive=True) |
|
top_p = gr.Slider(0, 1, value=args.top_p, step=0.01, label="Top P", interactive=True) |
|
temperature = gr.Slider(0, 1, value=args.temp, step=0.01, label="Temperature", interactive=True) |
|
emptyBtn = gr.Button("Clear History") |
|
|
|
messages = gr.State([]) |
|
|
|
submitBtn.click( |
|
predict, |
|
[user_input, chatbot, max_length, top_p, temperature, messages], |
|
[chatbot, messages], |
|
show_progress=True, |
|
) |
|
submitBtn.click(reset_user_input, [], [user_input]) |
|
|
|
emptyBtn.click(reset_state, outputs=[chatbot, messages], show_progress=True) |
|
|
|
demo.queue().launch(share=False, inbrowser=True) |