# Adapted from https://github.com/THUDM/ChatGLM-6B/blob/main/web_demo.py import argparse from pathlib import Path import chatglm_cpp import gradio as gr import urllib DEFAULT_MODEL_PATH = "chatglm3-6b.bin" testfile = urllib.URLopener() testfile.retrieve( "https://huggingface.co/Braddy/chatglm3-6b-chitchat/resolve/main/q5_1.bin?download=true", DEFAULT_MODEL_PATH ) parser = argparse.ArgumentParser() parser.add_argument("-m", "--model", default=DEFAULT_MODEL_PATH, type=Path, help="model path") parser.add_argument("--mode", default="chat", type=str, choices=["chat", "generate"], help="inference mode") parser.add_argument("-l", "--max_length", default=2048, type=int, help="max total length including prompt and output") parser.add_argument("-c", "--max_context_length", default=512, type=int, help="max context length") parser.add_argument("--top_k", default=0, type=int, help="top-k sampling") parser.add_argument("--top_p", default=0.7, type=float, help="top-p sampling") parser.add_argument("--temp", default=0.95, type=float, help="temperature") parser.add_argument("--repeat_penalty", default=1.0, type=float, help="penalize repeat sequence of tokens") parser.add_argument("-t", "--threads", default=0, type=int, help="number of threads for inference") parser.add_argument("--plain", action="store_true", help="display in plain text without markdown support") args = parser.parse_args() pipeline = chatglm_cpp.Pipeline(args.model) def postprocess(text): if args.plain: return f"
{text}
" return text def predict(input, chatbot, max_length, top_p, temperature, messages): chatbot.append((postprocess(input), "")) messages.append(chatglm_cpp.ChatMessage(role="user", content=input)) generation_kwargs = dict( max_length=max_length, max_context_length=args.max_context_length, do_sample=temperature > 0, top_k=args.top_k, top_p=top_p, temperature=temperature, repetition_penalty=args.repeat_penalty, num_threads=args.threads, stream=True, ) response = "" if args.mode == "chat": chunks = [] for chunk in pipeline.chat(messages, **generation_kwargs): response += chunk.content chunks.append(chunk) chatbot[-1] = (chatbot[-1][0], postprocess(response)) yield chatbot, messages messages.append(pipeline.merge_streaming_messages(chunks)) else: for chunk in pipeline.generate(input, **generation_kwargs): response += chunk chatbot[-1] = (chatbot[-1][0], postprocess(response)) yield chatbot, messages yield chatbot, messages def reset_user_input(): return gr.update(value="") def reset_state(): return [], [] with gr.Blocks() as demo: gr.HTML("""

ChatGLM.cpp

""") chatbot = gr.Chatbot() with gr.Row(): with gr.Column(scale=4): user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=8) submitBtn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): max_length = gr.Slider(0, 2048, value=args.max_length, step=1.0, label="Maximum Length", interactive=True) top_p = gr.Slider(0, 1, value=args.top_p, step=0.01, label="Top P", interactive=True) temperature = gr.Slider(0, 1, value=args.temp, step=0.01, label="Temperature", interactive=True) emptyBtn = gr.Button("Clear History") messages = gr.State([]) submitBtn.click( predict, [user_input, chatbot, max_length, top_p, temperature, messages], [chatbot, messages], show_progress=True, ) submitBtn.click(reset_user_input, [], [user_input]) emptyBtn.click(reset_state, outputs=[chatbot, messages], show_progress=True) demo.queue().launch(share=False, inbrowser=True)