|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import librosa |
|
from transformers import pipeline |
|
|
|
|
|
|
|
|
|
asr = pipeline( |
|
"automatic-speech-recognition", |
|
model="facebook/wav2vec2-large-960h-lv60-self" |
|
) |
|
|
|
|
|
|
|
|
|
translation_models = { |
|
"Spanish": "Helsinki-NLP/opus-mt-en-es", |
|
"French": "Helsinki-NLP/opus-mt-en-fr", |
|
"German": "Helsinki-NLP/opus-mt-en-de", |
|
"Chinese": "Helsinki-NLP/opus-mt-en-zh", |
|
"Russian": "Helsinki-NLP/opus-mt-en-ru", |
|
"Arabic": "Helsinki-NLP/opus-mt-en-ar", |
|
"Portuguese": "Helsinki-NLP/opus-mt-en-pt", |
|
"Japanese": "Helsinki-NLP/opus-mt-en-ja", |
|
"Italian": "Helsinki-NLP/opus-mt-en-it", |
|
"Korean": "Helsinki-NLP/opus-mt-en-ko" |
|
} |
|
|
|
|
|
|
|
translation_tasks = { |
|
"Spanish": "translation_en_to_es", |
|
"French": "translation_en_to_fr", |
|
"German": "translation_en_to_de", |
|
"Chinese": "translation_en_to_zh", |
|
"Russian": "translation_en_to_ru", |
|
"Arabic": "translation_en_to_ar", |
|
"Portuguese": "translation_en_to_pt", |
|
"Japanese": "translation_en_to_ja", |
|
"Italian": "translation_en_to_it", |
|
"Korean": "translation_en_to_ko" |
|
} |
|
|
|
|
|
tts_models = { |
|
"Spanish": "tts_models/es/tacotron2-DDC", |
|
"French": "tts_models/fr/tacotron2", |
|
"German": "tts_models/de/tacotron2", |
|
"Chinese": "tts_models/zh/tacotron2", |
|
"Russian": "tts_models/ru/tacotron2", |
|
"Arabic": "tts_models/ar/tacotron2", |
|
"Portuguese": "tts_models/pt/tacotron2", |
|
"Japanese": "tts_models/ja/tacotron2", |
|
"Italian": "tts_models/it/tacotron2", |
|
"Korean": "tts_models/ko/tacotron2" |
|
} |
|
|
|
|
|
|
|
|
|
translator_cache = {} |
|
tts_cache = {} |
|
|
|
def get_translator(target_language): |
|
""" |
|
Retrieve or create a translation pipeline for the specified language. |
|
""" |
|
if target_language in translator_cache: |
|
return translator_cache[target_language] |
|
|
|
model_name = translation_models[target_language] |
|
task_name = translation_tasks[target_language] |
|
|
|
translator = pipeline(task_name, model=model_name) |
|
translator_cache[target_language] = translator |
|
return translator |
|
|
|
def get_tts(target_language): |
|
""" |
|
Retrieve or create a TTS pipeline for the specified language, if available. |
|
""" |
|
if target_language in tts_cache: |
|
return tts_cache[target_language] |
|
|
|
model_name = tts_models.get(target_language) |
|
if model_name is None: |
|
|
|
raise ValueError(f"No TTS model available for {target_language}.") |
|
|
|
try: |
|
tts_pipeline = pipeline("text-to-speech", model=model_name) |
|
except Exception as e: |
|
raise ValueError( |
|
f"Failed to load TTS model for {target_language}. " |
|
f"Make sure '{model_name}' exists on Hugging Face.\nError: {e}" |
|
) |
|
|
|
tts_cache[target_language] = tts_pipeline |
|
return tts_pipeline |
|
|
|
|
|
|
|
|
|
def predict(audio, text, target_language): |
|
""" |
|
1. Obtain English text (from text input or ASR). |
|
2. Translate English -> target_language. |
|
3. Synthesize speech in target_language. |
|
""" |
|
|
|
if text.strip(): |
|
english_text = text.strip() |
|
elif audio is not None: |
|
sample_rate, audio_data = audio |
|
|
|
|
|
if audio_data.dtype not in [np.float32, np.float64]: |
|
audio_data = audio_data.astype(np.float32) |
|
|
|
|
|
if len(audio_data.shape) > 1 and audio_data.shape[1] > 1: |
|
audio_data = np.mean(audio_data, axis=1) |
|
|
|
|
|
if sample_rate != 16000: |
|
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000) |
|
|
|
input_audio = {"array": audio_data, "sampling_rate": 16000} |
|
asr_result = asr(input_audio) |
|
english_text = asr_result["text"] |
|
else: |
|
return "No input provided.", "", None |
|
|
|
|
|
translator = get_translator(target_language) |
|
try: |
|
translation_result = translator(english_text) |
|
translated_text = translation_result[0]["translation_text"] |
|
except Exception as e: |
|
|
|
return english_text, f"Translation error: {e}", None |
|
|
|
|
|
try: |
|
tts_pipeline = get_tts(target_language) |
|
tts_result = tts_pipeline(translated_text) |
|
|
|
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"]) |
|
except Exception as e: |
|
|
|
return english_text, translated_text, f"TTS error: {e}" |
|
|
|
return english_text, translated_text, synthesized_audio |
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.Audio(type="numpy", label="Record/Upload English Audio (optional)"), |
|
gr.Textbox(lines=4, placeholder="Or enter English text here", label="English Text Input (optional)"), |
|
gr.Dropdown(choices=list(translation_models.keys()), value="Spanish", label="Target Language") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="English Transcription"), |
|
gr.Textbox(label="Translation (Target Language)"), |
|
gr.Audio(label="Synthesized Speech in Target Language") |
|
], |
|
title="Multimodal Language Learning Aid", |
|
description=( |
|
"This app helps language learners by providing three outputs:\n" |
|
"1. English transcription (from ASR or text input),\n" |
|
"2. Translation to a target language (using Helsinki-NLP models), and\n" |
|
"3. Synthetic speech in the target language.\n\n" |
|
"Select one of the top 10 commonly used languages from the dropdown.\n" |
|
"Either record/upload an English audio sample or enter English text directly.\n\n" |
|
"Note: Some TTS models may not exist or be unstable for certain languages." |
|
), |
|
allow_flagging="never" |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|