Update app.py
Browse files
app.py
CHANGED
@@ -28,51 +28,94 @@ translation_models = {
|
|
28 |
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
29 |
}
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
tts_models = {
|
32 |
"Spanish": "tts_models/es/tacotron2-DDC",
|
33 |
"French": "tts_models/fr/tacotron2",
|
34 |
"German": "tts_models/de/tacotron2",
|
35 |
-
"Chinese": "tts_models/zh/tacotron2",
|
36 |
-
"Russian": "tts_models/ru/tacotron2",
|
37 |
-
"Arabic": "tts_models/ar/tacotron2",
|
38 |
-
"Portuguese": "tts_models/pt/tacotron2",
|
39 |
-
"Japanese": "tts_models/ja/tacotron2",
|
40 |
-
"Italian": "tts_models/it/tacotron2",
|
41 |
-
"Korean": "tts_models/ko/tacotron2"
|
42 |
}
|
43 |
|
|
|
44 |
# Caches for translator and TTS pipelines
|
|
|
45 |
translator_cache = {}
|
46 |
tts_cache = {}
|
47 |
|
48 |
def get_translator(target_language):
|
|
|
|
|
|
|
49 |
if target_language in translator_cache:
|
50 |
return translator_cache[target_language]
|
|
|
51 |
model_name = translation_models[target_language]
|
52 |
-
|
53 |
-
|
|
|
54 |
translator_cache[target_language] = translator
|
55 |
return translator
|
56 |
|
57 |
def get_tts(target_language):
|
|
|
|
|
|
|
58 |
if target_language in tts_cache:
|
59 |
return tts_cache[target_language]
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
# --------------------------------------------------
|
66 |
# Prediction Function
|
67 |
# --------------------------------------------------
|
68 |
def predict(audio, text, target_language):
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
71 |
english_text = text.strip()
|
72 |
elif audio is not None:
|
73 |
sample_rate, audio_data = audio
|
74 |
|
75 |
-
# Ensure the audio is
|
76 |
if audio_data.dtype not in [np.float32, np.float64]:
|
77 |
audio_data = audio_data.astype(np.float32)
|
78 |
|
@@ -90,16 +133,24 @@ def predict(audio, text, target_language):
|
|
90 |
else:
|
91 |
return "No input provided.", "", None
|
92 |
|
93 |
-
# Translation step
|
94 |
translator = get_translator(target_language)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
return english_text, translated_text, synthesized_audio
|
105 |
|
@@ -122,10 +173,11 @@ iface = gr.Interface(
|
|
122 |
description=(
|
123 |
"This app helps language learners by providing three outputs:\n"
|
124 |
"1. English transcription (from ASR or text input),\n"
|
125 |
-
"2. Translation to a target language, and\n"
|
126 |
"3. Synthetic speech in the target language.\n\n"
|
127 |
-
"
|
128 |
-
"
|
|
|
129 |
),
|
130 |
allow_flagging="never"
|
131 |
)
|
|
|
28 |
"Korean": "Helsinki-NLP/opus-mt-en-ko"
|
29 |
}
|
30 |
|
31 |
+
# Each language often requires a specific pipeline task name
|
32 |
+
# (e.g., "translation_en_to_zh" rather than "translation_en_to_chinese")
|
33 |
+
translation_tasks = {
|
34 |
+
"Spanish": "translation_en_to_es",
|
35 |
+
"French": "translation_en_to_fr",
|
36 |
+
"German": "translation_en_to_de",
|
37 |
+
"Chinese": "translation_en_to_zh",
|
38 |
+
"Russian": "translation_en_to_ru",
|
39 |
+
"Arabic": "translation_en_to_ar",
|
40 |
+
"Portuguese": "translation_en_to_pt",
|
41 |
+
"Japanese": "translation_en_to_ja",
|
42 |
+
"Italian": "translation_en_to_it",
|
43 |
+
"Korean": "translation_en_to_ko"
|
44 |
+
}
|
45 |
+
|
46 |
+
# TTS models (some may not exist or may be unofficial)
|
47 |
tts_models = {
|
48 |
"Spanish": "tts_models/es/tacotron2-DDC",
|
49 |
"French": "tts_models/fr/tacotron2",
|
50 |
"German": "tts_models/de/tacotron2",
|
51 |
+
"Chinese": "tts_models/zh/tacotron2", # Verify if this actually exists on Hugging Face
|
52 |
+
"Russian": "tts_models/ru/tacotron2", # Same note
|
53 |
+
"Arabic": "tts_models/ar/tacotron2", # Same note
|
54 |
+
"Portuguese": "tts_models/pt/tacotron2", # Same note
|
55 |
+
"Japanese": "tts_models/ja/tacotron2", # Same note
|
56 |
+
"Italian": "tts_models/it/tacotron2", # Same note
|
57 |
+
"Korean": "tts_models/ko/tacotron2" # Same note
|
58 |
}
|
59 |
|
60 |
+
# --------------------------------------------------
|
61 |
# Caches for translator and TTS pipelines
|
62 |
+
# --------------------------------------------------
|
63 |
translator_cache = {}
|
64 |
tts_cache = {}
|
65 |
|
66 |
def get_translator(target_language):
|
67 |
+
"""
|
68 |
+
Retrieve or create a translation pipeline for the specified language.
|
69 |
+
"""
|
70 |
if target_language in translator_cache:
|
71 |
return translator_cache[target_language]
|
72 |
+
|
73 |
model_name = translation_models[target_language]
|
74 |
+
task_name = translation_tasks[target_language]
|
75 |
+
|
76 |
+
translator = pipeline(task_name, model=model_name)
|
77 |
translator_cache[target_language] = translator
|
78 |
return translator
|
79 |
|
80 |
def get_tts(target_language):
|
81 |
+
"""
|
82 |
+
Retrieve or create a TTS pipeline for the specified language, if available.
|
83 |
+
"""
|
84 |
if target_language in tts_cache:
|
85 |
return tts_cache[target_language]
|
86 |
+
|
87 |
+
model_name = tts_models.get(target_language)
|
88 |
+
if model_name is None:
|
89 |
+
# If no TTS model is mapped, raise an error or handle gracefully
|
90 |
+
raise ValueError(f"No TTS model available for {target_language}.")
|
91 |
+
|
92 |
+
try:
|
93 |
+
tts_pipeline = pipeline("text-to-speech", model=model_name)
|
94 |
+
except Exception as e:
|
95 |
+
raise ValueError(
|
96 |
+
f"Failed to load TTS model for {target_language}. "
|
97 |
+
f"Make sure '{model_name}' exists on Hugging Face.\nError: {e}"
|
98 |
+
)
|
99 |
+
|
100 |
+
tts_cache[target_language] = tts_pipeline
|
101 |
+
return tts_pipeline
|
102 |
|
103 |
# --------------------------------------------------
|
104 |
# Prediction Function
|
105 |
# --------------------------------------------------
|
106 |
def predict(audio, text, target_language):
|
107 |
+
"""
|
108 |
+
1. Obtain English text (from text input or ASR).
|
109 |
+
2. Translate English -> target_language.
|
110 |
+
3. Synthesize speech in target_language.
|
111 |
+
"""
|
112 |
+
# 1. English text from text input (if provided), else from audio via ASR
|
113 |
+
if text.strip():
|
114 |
english_text = text.strip()
|
115 |
elif audio is not None:
|
116 |
sample_rate, audio_data = audio
|
117 |
|
118 |
+
# Ensure the audio is float32 for librosa
|
119 |
if audio_data.dtype not in [np.float32, np.float64]:
|
120 |
audio_data = audio_data.astype(np.float32)
|
121 |
|
|
|
133 |
else:
|
134 |
return "No input provided.", "", None
|
135 |
|
136 |
+
# 2. Translation step
|
137 |
translator = get_translator(target_language)
|
138 |
+
try:
|
139 |
+
translation_result = translator(english_text)
|
140 |
+
translated_text = translation_result[0]["translation_text"]
|
141 |
+
except Exception as e:
|
142 |
+
# If there's an error in translation, return partial results
|
143 |
+
return english_text, f"Translation error: {e}", None
|
144 |
+
|
145 |
+
# 3. TTS step: synthesize speech from the translated text
|
146 |
+
try:
|
147 |
+
tts_pipeline = get_tts(target_language)
|
148 |
+
tts_result = tts_pipeline(translated_text)
|
149 |
+
# The TTS pipeline returns a dict with "wav" and "sample_rate"
|
150 |
+
synthesized_audio = (tts_result["sample_rate"], tts_result["wav"])
|
151 |
+
except Exception as e:
|
152 |
+
# If TTS fails, return partial results
|
153 |
+
return english_text, translated_text, f"TTS error: {e}"
|
154 |
|
155 |
return english_text, translated_text, synthesized_audio
|
156 |
|
|
|
173 |
description=(
|
174 |
"This app helps language learners by providing three outputs:\n"
|
175 |
"1. English transcription (from ASR or text input),\n"
|
176 |
+
"2. Translation to a target language (using Helsinki-NLP models), and\n"
|
177 |
"3. Synthetic speech in the target language.\n\n"
|
178 |
+
"Select one of the top 10 commonly used languages from the dropdown.\n"
|
179 |
+
"Either record/upload an English audio sample or enter English text directly.\n\n"
|
180 |
+
"Note: Some TTS models may not exist or be unstable for certain languages."
|
181 |
),
|
182 |
allow_flagging="never"
|
183 |
)
|