|
import argparse
|
|
from model import CFM, UNetT, DiT, MMDiT, Trainer
|
|
from model.utils import get_tokenizer
|
|
from model.dataset import load_dataset
|
|
from cached_path import cached_path
|
|
import shutil,os
|
|
|
|
target_sample_rate = 24000
|
|
n_mel_channels = 100
|
|
hop_length = 256
|
|
|
|
tokenizer = "pinyin"
|
|
tokenizer_path = None
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Train CFM Model')
|
|
|
|
parser.add_argument('--exp_name', type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"],help='Experiment name')
|
|
parser.add_argument('--dataset_name', type=str, default="Emilia_ZH_EN", help='Name of the dataset to use')
|
|
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for training')
|
|
parser.add_argument('--batch_size_per_gpu', type=int, default=256, help='Batch size per GPU')
|
|
parser.add_argument('--batch_size_type', type=str, default="frame", choices=["frame", "sample"],help='Batch size type')
|
|
parser.add_argument('--max_samples', type=int, default=16, help='Max sequences per batch')
|
|
parser.add_argument('--grad_accumulation_steps', type=int, default=1,help='Gradient accumulation steps')
|
|
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
|
|
parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs')
|
|
parser.add_argument('--num_warmup_updates', type=int, default=5, help='Warmup steps')
|
|
parser.add_argument('--save_per_updates', type=int, default=10, help='Save checkpoint every X steps')
|
|
parser.add_argument('--last_per_steps', type=int, default=10, help='Save last checkpoint every X steps')
|
|
parser.add_argument('--finetune', type=bool, default=True, help='Use Finetune')
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
|
|
|
|
if args.exp_name == "F5TTS_Base":
|
|
wandb_resume_id = None
|
|
model_cls = DiT
|
|
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
if args.finetune:
|
|
ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
|
elif args.exp_name == "E2TTS_Base":
|
|
wandb_resume_id = None
|
|
model_cls = UNetT
|
|
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
if args.finetune:
|
|
ckpt_path = str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
|
|
|
if args.finetune:
|
|
path_ckpt = os.path.join("ckpts",args.dataset_name)
|
|
if os.path.isdir(path_ckpt)==False:
|
|
os.makedirs(path_ckpt,exist_ok=True)
|
|
shutil.copy2(ckpt_path,os.path.join(path_ckpt,os.path.basename(ckpt_path)))
|
|
|
|
checkpoint_path=os.path.join("ckpts",args.dataset_name)
|
|
|
|
|
|
tokenizer_path = args.dataset_name if tokenizer != "custom" else tokenizer_path
|
|
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
|
|
|
mel_spec_kwargs = dict(
|
|
target_sample_rate=target_sample_rate,
|
|
n_mel_channels=n_mel_channels,
|
|
hop_length=hop_length,
|
|
)
|
|
|
|
e2tts = CFM(
|
|
transformer=model_cls(
|
|
**model_cfg,
|
|
text_num_embeds=vocab_size,
|
|
mel_dim=n_mel_channels
|
|
),
|
|
mel_spec_kwargs=mel_spec_kwargs,
|
|
vocab_char_map=vocab_char_map,
|
|
)
|
|
|
|
trainer = Trainer(
|
|
e2tts,
|
|
args.epochs,
|
|
args.learning_rate,
|
|
num_warmup_updates=args.num_warmup_updates,
|
|
save_per_updates=args.save_per_updates,
|
|
checkpoint_path=checkpoint_path,
|
|
batch_size=args.batch_size_per_gpu,
|
|
batch_size_type=args.batch_size_type,
|
|
max_samples=args.max_samples,
|
|
grad_accumulation_steps=args.grad_accumulation_steps,
|
|
max_grad_norm=args.max_grad_norm,
|
|
wandb_project="CFM-TTS",
|
|
wandb_run_name=args.exp_name,
|
|
wandb_resume_id=wandb_resume_id,
|
|
last_per_steps=args.last_per_steps,
|
|
)
|
|
|
|
train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
|
|
trainer.train(train_dataset,
|
|
resumable_with_seed=666
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|
|
|